Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Am Chem Soc ; 146(28): 19088-19100, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38946086

ABSTRACT

Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).


Subject(s)
Immunoconjugates , Tomography, Emission-Computed, Single-Photon , Immunoconjugates/chemistry , Humans , Animals , Mice , Benzodiazepines/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Pyrroles/chemistry
2.
Cancer Immunol Immunother ; 73(10): 209, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112670

ABSTRACT

BACKGROUND: Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS: We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS: HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION: We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Humans , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Female , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Receptor, ErbB-2/immunology , Cell Line, Tumor , Immunotherapy/methods , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
3.
Bioconjug Chem ; 30(1): 148-160, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30566343

ABSTRACT

Site-specific conjugation of small molecules to antibodies represents an attractive goal for the development of more homogeneous targeted therapies and diagnostics. Most site-specific conjugation strategies require modification or removal of antibody glycans or interchain disulfide bonds or engineering of an antibody mutant that bears a reactive handle. While such methods are effective, they complicate the process of preparing antibody conjugates and can negatively impact biological activity. Herein we report the development and detailed characterization of a robust photoaffinity cross-linking method for site-specific conjugation to fully glycosylated wild-type antibodies. The method employs a benzoylphenylalanine (Bpa) mutant of a previously described 13-residue peptide derived from phage display to bind tightly to the Fc domain; upon UV irradiation, the Bpa residue forms a diradical that reacts with the bound antibody. After the initial discovery of an effective Bpa mutant peptide and optimization of the reaction conditions to enable efficient conjugation without concomitant UV-induced photodamage of the antibody, we assessed the scope of the photoconjugation reaction across different human and nonhuman antibodies and antibody mutants. Next, the specific site of conjugation on a human antibody was characterized in detail by mass spectrometry experiments and at atomic resolution by X-ray crystallography. Finally, we adapted the photoconjugation method to attach a cytotoxic payload site-specifically to a wild-type antibody and showed that the resulting conjugate is both stable in plasma and as potent as a conventional antibody-drug conjugate in cells, portending well for future biological applications.


Subject(s)
Antibodies/chemistry , Cross-Linking Reagents/chemistry , Immunoconjugates/chemistry , Peptides/chemistry , Photoaffinity Labels/chemistry , Animals , Humans , Mutation , Oxidation-Reduction , Photochemical Processes , Protein Binding , Protein Conformation , Surface Plasmon Resonance
4.
Bioconjug Chem ; 30(12): 3046-3056, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31726009

ABSTRACT

Disulfide-linked bioconjugates allow the delivery of pharmacologically active or other cargo to specific tissues in a redox-sensitive fashion. However, an understanding of the kinetics, subcellular distribution, and mechanism of disulfide cleavage in such bioconjugates is generally lacking. Here, we report a modular disulfide-linked TAMRA-BODIPY based FRET probe that can be readily synthesized, modified, and conjugated to a cysteine-containing biomolecule to enable real-time monitoring of disulfide cleavage during receptor-mediated endocytosis in cells. We demonstrate the utility of this probe to study disulfide reduction during HER2 receptor-mediated uptake of a Cys-engineered anti-HER2 THIOMAB antibody. We found that introduction of positive, but not negative, charges in the probe improved retention of the BODIPY catabolite. This permitted the observation of significant disulfide cleavage in endosomes or lysosomes on par with proteolytic cleavage of a similarly charged valine-citrulline peptide-based probe. In general, the FRET probe we describe should enable real-time cellular monitoring of disulfide cleavage in other targeted delivery systems for mechanistic or diagnostic applications. Furthermore, modifications to the released BODIPY moiety permit evaluation of physicochemical properties that govern lysosomal egress or retention, which may have implications for the development of next-generation antibody-drug conjugates.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Animals , Boron Compounds , Drug Monitoring/methods , Endocytosis , Endosomes/metabolism , Fluorescence Resonance Energy Transfer/trends , Humans , Immunoconjugates , Lysosomes/metabolism , Receptor, ErbB-2/immunology , Rhodamines
5.
Bioconjug Chem ; 30(5): 1356-1370, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30966735

ABSTRACT

This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species. Variation of both the payload mAb attachment site and length of the linker-drug is shown to alter the rates of adduct formation. Subsequent experiments demonstrated that adduct formation attenuates the in vitro antiproliferation activity of the affected seco-CBI-dimer TDCs, but does not significantly impact the in vivo efficacy of the conjugates. In vitro assays employing phosphatase-treated whole blood suggest that A1M adduct formation is likely to occur if the seco-CBI-dimer TDCs are administered to humans. Importantly, protein adduct formation leads to the underestimation of total antibody (Tab) concentrations using an ELISA assay but does not affect Tab values determined via an orthogonal LC-MS/MS method. Several recommendations regarding bioanalysis of future in vivo studies involving related seco-CBI-containing ADCs are provided based on these collective findings.


Subject(s)
Alpha-Globulins/chemistry , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Haplorhini , Humans , Immunoconjugates/chemistry , Mice , Rats , Xenograft Model Antitumor Assays
6.
Drug Metab Dispos ; 47(10): 1156-1163, 2019 10.
Article in English | MEDLINE | ID: mdl-31085544

ABSTRACT

In cells, catalytic disulfide cleavage is an essential mechanism in protein folding and synthesis. However, detailed enzymatic catalytic mechanism relating cleavage of disulfide bonds in xenobiotics is not well understood. This study reports an enzymatic mechanism of cleavage of disulfide bonds in xenobiotic small molecules and antibody conjugate (ADC) linkers. The chemically stable disulfide bonds in substituted disulfide-containing pyrrolobenzodiazepine (PBD, pyrrolo[2,1-c][1,4]benzodiazepine) monomer prodrugs in presence of glutathione or cysteine were found to be unstable in incubations in whole blood of humans and rats. It was shown the enzymes involved were thioredoxin (TRX) and glutaredoxin (GRX). For a diverse set of drug-linker conjugates, we determined that TRX in the presence of TRX-reductase and NADPH generated the cleaved products that are consistent with catalytic disulfide cleavage and linker immolation. GRX was less rigorously studied; in the set of compounds studied, its role in the catalytic cleavage was also confirmed. Collectively, these in vitro experiments demonstrate that TRX as well as GRX can catalyze the cleavage of disulfide bonds in both small molecules and linkers of ADCs.


Subject(s)
Glutaredoxins/metabolism , Immunoconjugates/pharmacokinetics , Thioredoxins/metabolism , Animals , Benzodiazepines/chemistry , Benzodiazepines/metabolism , Disulfides/chemistry , Disulfides/metabolism , Female , Humans , Immunoconjugates/chemistry , Male , Pyrroles/chemistry , Pyrroles/metabolism , Rats , Recombinant Proteins/metabolism , Thioredoxin-Disulfide Reductase/metabolism
7.
Bioconjug Chem ; 29(7): 2468-2477, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29856915

ABSTRACT

Despite the recent success of antibody-drug conjugates (ADCs) in cancer therapy, a detailed understanding of their entry, trafficking, and metabolism in cancer cells is limited. To gain further insight into the activation mechanism of ADCs, we incorporated fluorescence resonance energy transfer (FRET) reporter groups into the linker connecting the antibody to the drug and studied various aspects of intracellular ADC processing mechanisms. When comparing the trafficking of the antibody-FRET drug conjugates in various different model cells, we found that the cellular background plays an important role in how the antigen-mediated antibody is processed. Certain tumor cells showed limited cytosolic transport of the payload despite efficient linker cleavage. Our FRET assay provides a facile and robust assessment of intracellular ADC activation that may have significant implications for the future development of ADCs.


Subject(s)
Biological Transport , Fluorescence Resonance Energy Transfer , Immunoconjugates/pharmacokinetics , Cell Membrane Permeability , Cross-Linking Reagents/chemistry , Humans , Immunoconjugates/metabolism , Peptides
8.
Bioconjug Chem ; 29(2): 473-485, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29425028

ABSTRACT

THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.


Subject(s)
Antineoplastic Agents, Immunological/chemistry , Cysteine/chemistry , Disulfides/chemistry , Immunoconjugates/chemistry , Maleimides/chemistry , Trastuzumab/chemistry , Animals , Antineoplastic Agents, Immunological/blood , Cysteine/blood , Cysteine/genetics , Disulfides/blood , Drug Stability , High-Throughput Screening Assays , Humans , Immunoconjugates/blood , Maleimides/blood , Models, Molecular , Mutagenesis, Site-Directed , Oligopeptides/blood , Oligopeptides/chemistry , Protein Aggregates , Protein Stability , Rats , Trastuzumab/blood , Trastuzumab/genetics
9.
Bioconjug Chem ; 29(2): 267-274, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29369629

ABSTRACT

The valine-citrulline (Val-Cit) dipeptide and p-aminobenzyl (PAB) spacer have been commonly used as a cleavable self-immolating linker in ADC design including in the clinically approved ADC, brentuximab vedotin (Adcetris). When the same linker was used to connect to the phenol of the cyclopropabenzindolone (CBI) (P1), the resulting ADC1 showed loss of potency in CD22 target-expressing cancer cell lines (e.g., BJAB, WSU-DLCL2). In comparison, the conjugate (ADC2) of a cyclopropapyrroloindolone (CPI) (P2) was potent despite the two corresponding free drugs having similar picomolar cell-killing activity. Although the corresponding spirocyclization products of P1 and P2, responsible for DNA alkylation, are a prominent component in buffer, the linker immolation was slow when the PAB was connected as an ether (PABE) to the phenol in P1 compared to that in P2. Additional immolation studies with two other PABE-linked substituted phenol compounds showed that electron-withdrawing groups accelerated the immolation to release an acidic phenol-containing payload (to delocalize the negative charge on the anticipated anionic phenol oxygen during immolation). In contrast, efficient immolation of LD4 did not result in an active ADC4 because the payload (P4) had a low potency to kill cells. In addition, nonimmolation of LD5 did not affect the cell-killing potency of its ADC5 since immolation is not required for DNA alkylation by the center-linked pyrrolobenzodiazepine. Therefore, careful evaluation needs to be conducted when the Val-Cit-PAB linker is used to connect antibodies to a phenol-containing drug as the linker immolation, as well as payload potency and stability, affects the cell-killing activity of an ADC.


Subject(s)
Cell Survival/drug effects , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Phenol/chemistry , Phenol/pharmacology , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Brentuximab Vedotin , Cell Line, Tumor , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Humans , Neoplasms/drug therapy
10.
Bioconjug Chem ; 29(4): 1155-1167, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29481745

ABSTRACT

Previous investigations on antibody-drug conjugate (ADC) stability have focused on drug release by linker-deconjugation due to the relatively stable payloads such as maytansines. Recent development of ADCs has been focused on exploring technologies to produce homogeneous ADCs and new classes of payloads to expand the mechanisms of action of the delivered drugs. Certain new ADC payloads could undergo metabolism in circulation while attached to antibodies and thus affect ADC stability, pharmacokinetics, and efficacy and toxicity profiles. Herein, we investigate payload stability specifically and seek general guidelines to address payload metabolism and therefore increase the overall ADC stability. Investigation was performed on various payloads with different functionalities (e.g., PNU-159682 analog, tubulysin, cryptophycin, and taxoid) using different conjugation sites (HC-A118C, LC-K149C, and HC-A140C) on THIOMAB antibodies. We were able to reduce metabolism and inactivation of a broad range of payloads of THIOMAB antibody-drug conjugates by employing optimal conjugation sites (LC-K149C and HC-A140C). Additionally, further payload stability was achieved by optimizing the linkers. Coupling relatively stable sites with optimized linkers provided optimal stability and reduction of payloads metabolism in circulation in vivo.


Subject(s)
Antibodies/chemistry , Immunoconjugates/chemistry , Immunologic Factors/chemistry , Pharmaceutical Preparations/chemistry , Antigens/immunology , Binding Sites , Drug Stability , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacokinetics , Immunologic Factors/administration & dosage , Immunologic Factors/pharmacokinetics
11.
Chemistry ; 24(19): 4830-4834, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29493023

ABSTRACT

A novel strategy to attach indole-containing payloads to antibodies through a carbamate moiety and a self-immolating, disulfide-based linker is described. This new strategy was employed to connect a selective estrogen receptor down-regulator (SERD) to various antibodies in a site-selective manner. The resulting conjugates displayed potent, antigen-dependent down-regulation of estrogen receptor levels in MCF7-neo/HER2 and MCF7-hB7H4 cells. They also exhibited similar antigen-dependent modulation of the estrogen receptor in tumors when administered intravenously to mice bearing MCF7-neo/HER2 tumor xenografts. The indole-carbamate moiety present in the new linker was stable in whole blood from various species and also exhibited good in vivo stability properties in mice.


Subject(s)
Indoles/chemistry , Animals , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Humans , Immunoconjugates/administration & dosage , MCF-7 Cells , Mice
12.
Mol Pharm ; 15(9): 3979-3996, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30040421

ABSTRACT

A number of cytotoxic pyrrolobenzodiazepine (PBD) monomers containing various disulfide-based prodrugs were evaluated for their ability to undergo activation (disulfide cleavage) in vitro in the presence of either glutathione (GSH) or cysteine (Cys). A good correlation was observed between in vitro GSH stability and in vitro cytotoxicity toward tumor cell lines. The prodrug-containing compounds were typically more potent against cells with relatively high intracellular GSH levels (e.g., KPL-4 cells). Several antibody-drug conjugates (ADCs) were subsequently constructed from PBD dimers that incorporated selected disulfide-based prodrugs. Such HER2 conjugates exhibited potent antiproliferation activity against KPL-4 cells in vitro in an antigen-dependent manner. However, the disulfide prodrugs contained in the majority of such entities were surprisingly unstable toward whole blood from various species. One HER2-targeting conjugate that contained a thiophenol-derived disulfide prodrug was an exception to this stability trend. It exhibited potent activity in a KPL-4 in vivo efficacy model that was approximately three-fold weaker than that displayed by the corresponding parent ADC. The same prodrug-containing conjugate demonstrated a three-fold improvement in mouse tolerability properties in vivo relative to the parent ADC, which did not contain the prodrug.


Subject(s)
Benzodiazepines/chemistry , Disulfides/chemistry , Immunoconjugates/chemistry , Prodrugs/chemistry , Pyrroles/chemistry , Cell Line, Tumor , Cysteine/metabolism , Glutathione/metabolism , Humans , Immunoconjugates/metabolism , Molecular Structure
13.
Bioconjug Chem ; 28(10): 2538-2548, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28885827

ABSTRACT

The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.


Subject(s)
Cysteine/chemistry , Immunoconjugates/chemistry , Benzodiazepines/chemistry , Drug Stability , Immunoconjugates/genetics , Maleimides/chemistry , Models, Molecular , Mutation , Protein Conformation , Pyrroles/chemistry
14.
Bioconjug Chem ; 28(8): 2086-2098, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28636382

ABSTRACT

Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.


Subject(s)
Cysteine , Disulfides/chemistry , Immunoconjugates/chemistry , Peptides/chemistry , Protein Engineering , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Immunoconjugates/genetics , Mice
15.
Pharm Res ; 32(6): 1884-93, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25446772

ABSTRACT

PURPOSE: THIOMAB™ drug conjugates (TDCs) with engineered cysteine residues allow site-specific drug conjugation and defined Drug-to-Antibody Ratios (DAR). In order to help elucidate the impact of drug-loading, conjugation site, and subsequent deconjugation on pharmacokinetics and efficacy, we have developed an integrated mathematical model to mechanistically characterize pharmacokinetic behavior and preclinical efficacy of MMAE conjugated TDCs with different DARs. General applicability of the model structure was evaluated with two different TDCs. METHOD: Pharmacokinetics studies were conducted for unconjugated antibody and purified TDCs with DAR-1, 2 and 4 for trastuzumab TDC and Anti-STEAP1 TDC in mice. Total antibody concentrations and individual DAR fractions were measured. Efficacy studies were performed in tumor-bearing mice. RESULTS: An integrated model consisting of distinct DAR species (DAR0-4), each described by a two-compartment model was able to capture the experimental data well. Time series measurements of each Individual DAR species allowed for the incorporation of site-specific drug loss through deconjugation and the results suggest a higher deconjugation rate from heavy chain site HC-A114C than the light chain site LC-V205C. Total antibody concentrations showed multi-exponential decline, with a higher clearance associated with higher DAR species. The experimentally observed effects of TDC on tumor growth kinetics were successfully described by linking pharmacokinetic profiles to DAR-dependent killing of tumor cells. CONCLUSION: Results from the integrated model evaluated with two different TDCs highlight the impact of DAR and site of conjugation on pharmacokinetics and efficacy. The model can be used to guide future drug optimization and in-vivo studies.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Models, Biological , Sulfhydryl Compounds/pharmacokinetics , Trastuzumab/metabolism , Administration, Intravenous , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antigens, Neoplasm/immunology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cysteine , Female , Male , Metabolic Clearance Rate , Mice, Nude , Mice, SCID , Neoplasm Transplantation , Sulfhydryl Compounds/administration & dosage , Sulfhydryl Compounds/chemistry , Trastuzumab/administration & dosage , Trastuzumab/chemistry
16.
Bioconjug Chem ; 24(5): 772-9, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23578050

ABSTRACT

Antibody-drug conjugates (ADCs) are target-specific anticancer agents consisting of cytotoxic drugs covalently linked to a monoclonal antibody. The number of ADCs in the clinic is growing, and therefore thorough characterization of the quantitative assays used to measure ADC concentrations in support of pharmacokinetic, efficacy, and safety studies is of increasing importance. Cytotoxic drugs such as the tubulin polymerization inhibiting auristatin, monomethyl auristatin E, have been conjugated to antibodies via cleavable linkers (MC-vc-PAB) through internal cysteines. This results in a heterogeneous mixture of antibody species with drug-to-antibody ratios (DAR) ranging from 0 to 8. In order to characterize the assays used to quantitate total MC-vc-PAB-MMAE ADCs (conjugated and unconjugated antibody), we used purified fractions with defined DARs from 6 therapeutic antibodies to evaluate different assay formats and reagents. Our investigations revealed that for quantitation of total antibody, including all unconjugated and conjugated antibody species, sandwich ELISA formats did not always allow for recovery of all purified DAR fractions (DAR 0-8) to within ±20% of the expected values at the reagent concentrations tested. In evaluating alternative approaches, we found that the recovery of DAR fractions with semihomogeneous assay (SHA) formats, in which sample, capture, and detection reagents are preincubated in solution, were less affected by the antibody's MMAE drug load as compared to traditional stepwise sandwich ELISAs. Thus, choosing the optimal assay format and reagents for total antibody assays is valuable for developing accurate quantitative assays.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Immunotoxins/pharmacokinetics , Oligopeptides/pharmacokinetics , Tubulin Modulators/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Enzyme-Linked Immunosorbent Assay , Immunotoxins/chemistry , Mice , Mice, SCID , Oligopeptides/chemistry , Tubulin Modulators/chemistry
17.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414872

ABSTRACT

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

18.
Bioconjug Chem ; 22(10): 1994-2004, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-21913715

ABSTRACT

Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ∼45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antigens, Neoplasm/immunology , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Oxidoreductases/immunology , Animals , Antibodies, Monoclonal/blood , Disulfides/chemistry , Humans , Immunoconjugates/blood , Male , Models, Molecular , Oligopeptides/blood , Rats , Rats, Sprague-Dawley , Tissue Distribution
19.
Mol Cancer Ther ; 20(6): 1112-1120, 2021 06.
Article in English | MEDLINE | ID: mdl-33722856

ABSTRACT

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Calicheamicins/therapeutic use , Immunoconjugates/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Calicheamicins/pharmacology , Disease Models, Animal , Humans , Immunoconjugates/pharmacology , Mice
20.
J Med Chem ; 64(5): 2534-2575, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596065

ABSTRACT

The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Dipeptides/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Immunoconjugates/pharmacology , Proteolysis/drug effects , Transcription Factors/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/immunology , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Oxidoreductases/immunology , PC-3 Cells , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL