Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Science ; 380(6652): 1363-1367, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37384686

ABSTRACT

Gullies on Mars resemble water-carved channels on Earth, but they are mostly at elevations where liquid water is not expected under current climate conditions. It has been suggested that sublimation of carbon dioxide ice alone could have formed Martian gullies. We used a general circulation model to show that the highest-elevation Martian gullies coincide with the boundary of terrain that experienced pressures above the triple point of water when Mars' rotational axis tilt reached 35°. Those conditions have occurred repeatedly over the past several million years, most recently ~630,000 years ago. Surface water ice, if present at these locations, could have melted when temperatures rose >273 kelvin. We propose a dual gully formation scenario that is driven by melting of water ice followed by carbon dioxide ice sublimation.

2.
Nature ; 434(7031): 346-51, 2005 Mar 17.
Article in English | MEDLINE | ID: mdl-15772652

ABSTRACT

Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.


Subject(s)
Climate , Extraterrestrial Environment/chemistry , Geologic Sediments , Ice Cover , Mars , Snow , Geologic Sediments/chemistry , Photography , Space Flight , Time Factors
3.
Science ; 286(5447): 2134-7, 1999 Dec 10.
Article in English | MEDLINE | ID: mdl-10591640

ABSTRACT

High-resolution altimetric data define the detailed topography of the northern lowlands of Mars, and a range of data is consistent with the hypothesis that a lowland-encircling geologic contact represents the ancient shoreline of a large standing body of water present in middle Mars history. The contact altitude is close to an equipotential line, the topography is smoother at all scales below the contact than above it, the volume enclosed by this contact is within the range of estimates of available water on Mars, and a series of extensive terraces parallel the contact in many places.


Subject(s)
Evolution, Planetary , Extraterrestrial Environment , Mars , Water , Oceans and Seas
4.
Science ; 349(6247): aab0232, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228151

ABSTRACT

The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle "splashing" is responsible for the observed formations.

SELECTION OF CITATIONS
SEARCH DETAIL