Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Regul Toxicol Pharmacol ; 116: 104688, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32621976

ABSTRACT

The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship between skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework. Based on the relevance of the mechanisms and effects as well as the strengths and limitations of the experimental systems used to identify them, rules and principles are defined for deriving skin sensitization in silico assessments. Further, the assignments of reliability and confidence scores that reflect the overall strength of the assessment are discussed. This skin sensitization protocol supports the implementation and acceptance of in silico approaches for the prediction of skin sensitization.


Subject(s)
Allergens/toxicity , Haptens/toxicity , Risk Assessment/methods , Animal Testing Alternatives , Animals , Computer Simulation , Dendritic Cells/drug effects , Dermatitis, Contact/etiology , Humans , Keratinocytes/drug effects , Lymphocytes/drug effects
2.
Toxicol Sci ; 167(2): 438-449, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30295906

ABSTRACT

Detection of developmental phenotypes in zebrafish embryos typically involves a visual assessment and scoring of morphological features by an individual researcher. Subjective scoring could impact results and be of particular concern when phenotypic effect patterns are also used as a diagnostic tool to classify compounds. Here we introduce a quantitative morphometric approach based on image analysis of zebrafish embryos. A software called FishInspector was developed to detect morphological features from images collected using an automated system to position zebrafish embryos. The analysis was verified and compared with visual assessments of 3 participating laboratories using 3 known developmental toxicants (methotrexate, dexamethasone, and topiramate) and 2 negative compounds (loratadine and glibenclamide). The quantitative approach exhibited higher sensitivity and made it possible to compare patterns of effects with the potential to establish a grouping and classification of developmental toxicants. Our approach improves the robustness of phenotype scoring and reliability of assay performance and, hence, is anticipated to improve the predictivity of developmental toxicity screening using the zebrafish embryo.


Subject(s)
Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Image Processing, Computer-Assisted , Teratogens/toxicity , Zebrafish/physiology , Algorithms , Animals , Heart Rate/drug effects , Motor Activity/drug effects , Phenotype , Toxicity Tests/methods
3.
Reprod Toxicol ; 86: 33-44, 2019 06.
Article in English | MEDLINE | ID: mdl-30876927

ABSTRACT

Predicting embryotoxicity of pharmaceutical compounds or industrial chemicals is crucial for public safety. Conventional studies which monitor embryo-fetal development in rats and rabbits are costly and time consuming. Alternative assays which are simpler and less costly are being pursued. The purpose of this research was to assess the capacity for the zebrafish development assay to predict mammalian plasma levels that are embryotoxic. Previously published data on rat plasma levels associated with embryotoxicity were used to guide concentration ranges for each of 25 chemicals dissolved in the media bathing developing zebrafish embryos. Embryotoxic media concentrations were compared to embryotoxic rat plasma concentrations. Assays were conducted in parallel at multiple sites as a consortium effort through the Health and Environmental Sciences Institute (HESI). Considering results from all sites, the zebrafish embryo development assay predicted (within 1-log) the rat maternal exposure levels associated with embryotoxicity 75% of the time.


Subject(s)
Embryo, Nonmammalian , Embryonic Development , Toxicity Tests , Zebrafish , Animals , Animals, Genetically Modified , Embryo, Mammalian , Female , Fetal Development , Male , Pharmaceutical Preparations/blood , Rats
4.
ALTEX ; 30(2): 209-25, 2013.
Article in English | MEDLINE | ID: mdl-23665807

ABSTRACT

Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context.


Subject(s)
Metabolomics/methods , Toxicity Tests/methods , Animals , Humans , Models, Biological , Predictive Value of Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL