Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Neurol ; 30(3): 622-630, 2023 03.
Article in English | MEDLINE | ID: mdl-36435983

ABSTRACT

BACKGROUND AND PURPOSE: Parkinson disease (PD) is a progressive neurodegenerative disorder that affects the motor system but also involves deficits in emotional processing such as facial emotion recognition. In healthy participants, it has been shown that facial mimicry, the automatic imitation of perceived facial expressions, facilitates the interpretation of the emotional states of our counterpart. In PD patients, recent studies revealed reduced facial mimicry and consequently reduced facial feedback, suggesting that this reduction might contribute to the prominent emotion recognition deficits found in PD. METHODS: We investigated the influence of facial mimicry on facial emotion recognition. Twenty PD patients and 20 healthy controls (HCs) underwent a classical facial mimicry manipulation (holding a pen with the lips, teeth, or nondominant hand) while performing an emotional change detection task with faces. RESULTS: As expected, emotion recognition was significantly influenced by facial mimicry manipulation in HCs, further supporting the hypothesis of facial feedback and the related theory of embodied simulation. Importantly, patients with PD, generally and independent from the facial mimicry manipulation, were impaired in their ability to detected emotion changes. Our data further show that PD patients' facial emotional recognition abilities are completely unaffected by mimicry manipulation, suggesting that PD patients cannot profit from an artificial modulation of the already impaired facial feedback. CONCLUSIONS: These findings suggest that it is not the hypomimia and the absence of facial feedback per se, but a disruption of the facial feedback loop, that leads to the prominent emotion recognition deficit in PD patients.


Subject(s)
Facial Recognition , Parkinson Disease , Humans , Parkinson Disease/psychology , Feedback , Emotions , Facial Expression
2.
J Cogn Neurosci ; 31(11): 1631-1640, 2019 11.
Article in English | MEDLINE | ID: mdl-31274394

ABSTRACT

Facial expressions provide information about an individual's intentions and emotions and are thus an important medium for nonverbal communication. Theories of embodied cognition assume that facial mimicry and resulting facial feedback plays an important role in the perception of facial emotional expressions. Although behavioral and electrophysiological studies have confirmed the influence of facial feedback on the perception of facial emotional expressions, the influence of facial feedback on the automatic processing of such stimuli is largely unexplored. The automatic processing of unattended facial expressions can be investigated by visual expression-related MMN. The expression-related MMN reflects a differential ERP of automatic detection of emotional changes elicited by rarely presented facial expressions (deviants) among frequently presented facial expressions (standards). In this study, we investigated the impact of facial feedback on the automatic processing of facial expressions. For this purpose, participants (n = 19) performed a centrally presented visual detection task while neutral (standard), happy, and sad faces (deviants) were presented peripherally. During the task, facial feedback was manipulated by different pen holding conditions (holding the pen with teeth, lips, or nondominant hand). Our results indicate that automatic processing of facial expressions is influenced and thus dependent on the own facial feedback.


Subject(s)
Attention/physiology , Emotions/physiology , Evoked Potentials/physiology , Facial Expression , Facial Recognition/physiology , Feedback, Psychological/physiology , Adult , Electroencephalography , Female , Humans , Male , Visual Fields/physiology , Young Adult
3.
BMC Neurosci ; 20(1): 20, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31035935

ABSTRACT

BACKGROUND: Prepulse inhibition (PPI) of the acoustic startle response, a measurement of sensorimotor gaiting, is modulated by monoaminergic, presumably dopaminergic neurotransmission. Disturbances of the dopaminergic system can cause deficient PPI as found in neuropsychiatric diseases. A target specific influence of deep brain stimulation (DBS) on PPI has been shown in animal models of neuropsychiatric disorders. In the present study, three patients with early dementia of Alzheimer type underwent DBS of the median forebrain bundle (MFB) in a compassionate use program to maintain cognitive abilities. This provided us the unique possibility to investigate the effects of different stimulation conditions of DBS of the MFB on PPI in humans. RESULTS: Separate analysis of each patient consistently showed a frequency dependent pattern with a DBS-induced increase of PPI at 60 Hz and unchanged PPI at 20 or 130 Hz, as compared to sham stimulation. CONCLUSIONS: Our data demonstrate that electrical stimulation of the MFB modulates PPI in a frequency-dependent manner. PPI measurement could serve as a potential marker for optimization of DBS settings independent of the patient or the examiner.


Subject(s)
Alzheimer Disease/physiopathology , Deep Brain Stimulation/methods , Medial Forebrain Bundle/physiology , Sensory Gating/physiology , Aged , Diffusion Tensor Imaging , Female , Healthy Volunteers , Humans , Male , Prepulse Inhibition/physiology , Surgery, Computer-Assisted
4.
Sci Rep ; 11(1): 10477, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006957

ABSTRACT

The perception and storage of facial emotional expressions constitutes an important human skill that is essential for our daily social interactions. While previous research revealed that facial feedback can influence the perception of facial emotional expressions, it is unclear whether facial feedback also plays a role in memory processes of facial emotional expressions. In the present study we investigated the impact of facial feedback on the performance in emotional visual working memory (WM). For this purpose, 37 participants underwent a classical facial feedback manipulation (FFM) (holding a pen with the teeth-inducing a smiling expression vs. holding a pen with the non-dominant hand-as a control condition) while they performed a WM task on varying intensities of happy or sad facial expressions. Results show that the smiling manipulation improved memory performance selectively for happy faces, especially for highly ambiguous facial expressions. Furthermore, we found that in addition to an overall negative bias specifically for happy faces (i.e. happy faces are remembered as more negative than they initially were), FFM induced a positivity bias when memorizing emotional facial information (i.e. faces were remembered as being more positive than they actually were). Finally, our data demonstrate that men were affected more by FFM: during induced smiling men showed a larger positive bias than women did. These data demonstrate that facial feedback not only influences our perception but also systematically alters our memory of facial emotional expressions.


Subject(s)
Emotions , Facial Expression , Memory, Short-Term , Smiling , Adult , Female , Humans , Male , Young Adult
5.
Front Psychol ; 10: 2638, 2019.
Article in English | MEDLINE | ID: mdl-31849760

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms following dopaminergic depletion in the substantia nigra. Besides motor impairments, however, several non-motor detriments can have the potential to considerably impact subjectively perceived quality of life in patients. Particularly emotion recognition of facial expressions has been shown to be affected in PD, and especially the perception of negative emotions like fear, anger, or disgust is impaired. While emotion processing generally refers to automatic implicit as well as conscious explicit processing, the focus of most previous studies in PD was on explicit recognition of emotions only, while largely ignoring implicit processing deficits. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is widely accepted as a therapeutic measure in the treatment of PD and has been shown to advantageously influence motor problems. Among various concomitant non-motor effects of STN-DBS, modulation of facial emotion recognition under subthalamic stimulation has been investigated in previous studies with rather heterogeneous results. Although there seems to be a consensus regarding the processing of disgust, which significantly deteriorates under STN stimulation, findings concerning emotions like fear or happiness report heterogeneous data and seem to depend on various experimental settings and measurements. In the present review, we summarized previous investigations focusing on STN-DBS influence on recognition of facial emotional expressions in patients suffering from PD. In a first step, we provide a synopsis of disturbances and problems in facial emotion processing observed in patients with PD. Second, we present findings of STN-DBS influence on facial emotion recognition and especially highlight different impacts of stimulation on implicit and explicit emotional processing.

6.
Front Behav Neurosci ; 13: 224, 2019.
Article in English | MEDLINE | ID: mdl-31680891

ABSTRACT

Cognitive control is characterized by selective attention to relevant stimuli while irrelevant, distracting stimuli are inhibited. While the classical color-word Stroop task was implemented to investigate the processes of cognitive control, a variant of it-the face-word Stroop task-allows for directly investigating processes of emotional conflict control. It is thought that the prefrontal cortex (PFC) is especially involved in processes of cognitive control, while the rostral cingulate is mainly associated with the resolution of emotional conflict. In recent years, the role of the dorsolateral PFC (DLPFC) during the performance of the classical Stroop was investigated by means of transcranial direct current stimulation (tDCS) with divergent results. However, investigations to the causal role of the DLPFC during emotional conflict processing are rare. For this purpose, we used a combined high-definition tDCS (HD-tDCS)/electroencephalogram (EEG) setting to investigate the impact of anodal stimulation of the left DLPFC on behavioral and electrophysiological responses during an emotional face-word Stroop task. In two separate sessions, participants (n = 18) received either sham or anodal HD-tdc stimulation while responding to the emotional expression of the face and ignoring the word. Our results show that anodal stimulation of the left DLPFC increases the behavioral interference effect, that is, the already decelerated reaction times (RTs) to incongruent trials further increase while RTs to congruent trials remain largely unaffected. Furthermore, the stimulation modulates brain response to emotional facial expressions during the face-word Stroop generally-independent of the valence of the emotional expression and the congruency of the combined face-word presentation, the N170 decreases during anodal stimulation. These results reveal that the left DLPFC has a causal role in emotional conflict processing during a face-word Stroop.

7.
J Clin Med ; 8(9)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466414

ABSTRACT

: Background: Diminished emotion recognition is a known symptom in Parkinson (PD) patients and subthalamic nucleus deep brain stimulation (STN-DBS) has been shown to further deteriorate the processing of especially negative emotions. While emotion recognition generally refers to both, implicit and explicit processing, demonstrations of DBS-influences on implicit processing are sparse. In the present study, we assessed the impact of STN-DBS on explicit and implicit processing for emotional stimuli. METHODS: Under STN-DBS ON and OFF, fourteen PD patients performed an implicit as well as an explicit emotional processing task. To assess implicit emotional processing, patients were tested with a lexical decision task (LTD) combined with an affective priming paradigm, which provides emotional content through the facial eye region. To assess explicit emotional processing, patients additionally explicitly rated the emotional status of eyes and words used in the implicit task. RESULTS: DBS affected explicit emotional processing more than implicit processing with a more pronounced effect on error rates than on reaction speed. STN-DBS generally worsened implicit and explicit processing for disgust stimulus material but improved explicit processing of fear stimuli. CONCLUSIONS: This is the first study demonstrating influences of STN-DBS on explicit and implicit emotion processing in PD patients. While STN stimulation impeded the processing of disgust stimuli, it improved explicit discrimination of fear stimuli.

8.
J Neurol ; 265(3): 607-617, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29356975

ABSTRACT

Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.


Subject(s)
Mental Fatigue/therapy , Multiple Sclerosis/therapy , Prefrontal Cortex/physiopathology , Transcranial Direct Current Stimulation , Adult , Attention/physiology , Auditory Perception/physiology , Cognition/physiology , Electroencephalography , Evoked Potentials , Female , Humans , Male , Mental Fatigue/physiopathology , Multiple Sclerosis/physiopathology , Multiple Sclerosis/psychology , Neuropsychological Tests , Reaction Time/physiology , Treatment Outcome
9.
PLoS One ; 10(5): e0127061, 2015.
Article in English | MEDLINE | ID: mdl-25985442

ABSTRACT

Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC), which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS) on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.


Subject(s)
Judgment , Morals , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL