Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Epidemiology ; 34(6): 897-905, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37732880

ABSTRACT

BACKGROUND: Oxidative stress plays an important role in the health impacts of both outdoor fine particulate air pollution (PM 2.5 ) and thermal stress. However, it is not clear how the oxidative potential of PM 2.5 may influence the acute cardiovascular effects of temperature. METHODS: We conducted a case-crossover study of hospitalization for cardiovascular events in 35 cities across Canada during the summer months (July-September) between 2016 and 2018. We collected three different metrics of PM 2.5 oxidative potential each month in each location. We estimated associations between lag-0 daily temperature (per 5ºC) and hospitalization for all cardiovascular (n = 44,876) and ischemic heart disease (n = 14,034) events across strata of monthly PM 2.5 oxidative potential using conditional logistical models adjusting for potential time-varying confounders. RESULTS: Overall, associations between lag-0 temperature and acute cardiovascular events tended to be stronger when outdoor PM 2.5 oxidative potential was higher. For example, when glutathione-related oxidative potential (OP GSH ) was in the highest tertile, the odds ratio (OR) for all cardiovascular events was 1.040 (95% confidence intervals [CI] = 1.004, 1.074) compared with 0.980 (95% CI = 0.943, 1.018) when OP GSH was in the lowest tertile. We observed a greater difference for ischemic heart disease events, particularly for older subjects (age >70 years). CONCLUSIONS: The acute cardiovascular health impacts of summer temperature variations may be greater when outdoor PM 2.5 oxidative potential is elevated. This may be particularly important for ischemic heart disease events.


Subject(s)
Hospitalization , Myocardial Ischemia , Humans , Aged , Cross-Over Studies , Temperature , Canada/epidemiology , Myocardial Ischemia/epidemiology , Dust , Oxidative Stress
2.
Environ Sci Technol ; 57(8): 3238-3247, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36787278

ABSTRACT

To determine how traffic-related air pollution (TRAP) exposures affect commuter health, and whether cabin air filtration (CAF) can mitigate exposures, we conducted a cross-over study of 48 adults exposed to TRAP during two commutes with and without CAF. Measurements included particulate air pollutants (PM2.5, black carbon [BC], ultrafine particles [UFPs]), volatile organic compounds, and nitrogen dioxide. We measured participants' heart rate variability (HRV), saliva cortisol, and cognitive function. On average, CAF reduced concentrations of UFPs by 26,232 (95%CI: 11,734, 40,730) n/cm3, PM2.5 by 6 (95%CI: 5, 8) µg/m3, and BC by 1348 (95%CI: 1042, 1654) ng/m3, or 28, 30, and 32%, respectively. Each IQR increase in PM2.5 was associated with a 28% (95%CI: 2, 60) increase in high-frequency power HRV at the end of the commute and a 22% (95%CI: 7, 39) increase 45 min afterward. IQR increases in UFPs were associated with increased saliva cortisol in women during the commute (18% [95%CI: 0, 40]). IQR increases in UFPs were associated with strong switching costs (19% [95%CI: 2, 39]), indicating a reduced capacity for multitasking, and PM2.5 was associated with increased reaction latency, indicating slower responses (5% [95%CI: 1, 10]). CAF can reduce particulate exposures by almost a third.


Subject(s)
Air Pollutants , Air Pollution , Adult , Humans , Female , Air Pollutants/analysis , Heart Rate , Cross-Over Studies , Hydrocortisone , Saliva/chemistry , Air Pollution/analysis , Particulate Matter/analysis , Cognition
3.
Am J Respir Crit Care Med ; 206(11): 1370-1378, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35802828

ABSTRACT

Rationale: Outdoor particulate and gaseous air pollutants impair respiratory health in children, and these associations may be influenced by particle composition. Objectives: To examine whether associations between short-term variations in fine particulate air pollution, oxidant gases, and respiratory hospitalizations in children are modified by particle constituents (metals and sulfur) or oxidative potential. Methods: We conducted a case-crossover study of 10,500 children (0-17 years of age) across Canada. Daily fine particle mass concentrations and oxidant gases (nitrogen dioxide and ozone) were collected from ground monitors. Monthly estimates of fine particle constituents (metals and sulfur) and oxidative potential were also measured. Conditional logistic regression models were used to estimate associations between air pollutants and respiratory hospitalizations, above and below median values for particle constituents and oxidative potential. Measurements and Main Results: Lag-1 fine particulate matter mass concentrations were not associated with respiratory hospitalizations (odds ratio and 95% confidence interval per 10 µg/m3 increase in fine particulate matter: 1.004 [0.955-1.056]) in analyses ignoring particle constituents and oxidative potential. However, when models were examined above or below median metals, sulfur, and oxidative potential, positive associations were observed above the median. For example, the odds ratio and 95% confidence interval per 10 µg/m3 increase in fine particulate matter were 1.084 (1.007-1.167) when copper was above the median and 0.970 (0.929-1.014) when copper was below the median. Similar trends were observed for oxidant gases. Conclusions: Stronger associations were observed between outdoor fine particles, oxidant gases, and respiratory hospitalizations in children when metals, sulfur, and particle oxidative potential were elevated.


Subject(s)
Air Pollutants , Air Pollution , Child , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Copper/adverse effects , Copper/analysis , Cross-Over Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Hospitalization , Nitrogen Dioxide/adverse effects , Oxidants/adverse effects , Oxidative Stress , Particulate Matter/adverse effects , Particulate Matter/analysis , Sulfur/adverse effects , Sulfur/analysis , Infant, Newborn , Infant , Child, Preschool , Adolescent
4.
Epidemiology ; 33(6): 767-776, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36165987

ABSTRACT

BACKGROUND: Populations are simultaneously exposed to outdoor concentrations of oxidant gases (i.e., O 3 and NO 2 ) and fine particulate air pollution (PM 2.5 ). Since oxidative stress is thought to be an important mechanism explaining air pollution health effects, the adverse health impacts of oxidant gases may be greater in locations where PM 2.5 is more capable of causing oxidative stress. METHODS: We conducted a cohort study of 2 million adults in Canada between 2001 and 2016 living within 10 km of ground-level monitoring sites for outdoor PM 2.5 components and oxidative potential. O x exposures (i.e., the redox-weighted average of O 3 and NO 2 ) were estimated using a combination of chemical transport models, land use regression models, and ground-level data. Cox proportional hazards models were used to estimate associations between 3-year moving average O x and mortality outcomes across strata of transition metals and sulfur in PM 2.5 and three measures of PM 2.5 oxidative potential adjusting for possible confounding factors. RESULTS: Associations between O x and mortality were consistently stronger in regions with elevated PM 2.5 transition metal/sulfur content and oxidative potential. For example, each interquartile increase (6.27 ppb) in O x was associated with a 14.9% (95% CI = 13.0, 16.9) increased risk of nonaccidental mortality in locations with glutathione-related oxidative potential (OP GSH ) above the median whereas a 2.50% (95% CI = 0.600, 4.40) increase was observed in regions with OP GSH levels below the median (interaction P value <0.001). CONCLUSION: Spatial variations in PM 2.5 composition and oxidative potential may contribute to heterogeneity in the observed health impacts of long-term exposures to oxidant gases.


Subject(s)
Air Pollutants , Air Pollution , Adult , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Gases , Glutathione , Humans , Oxidants , Oxidation-Reduction , Oxidative Stress , Particulate Matter/analysis , Sulfur
5.
CMAJ ; 194(3): E80-E88, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35074834

ABSTRACT

BACKGROUND: Rates of lower respiratory tract infection (LRTI) among First Nations (FN) children living in Canada are elevated. We aimed to quantify indoor environmental quality (IEQ) in the homes of FN children in isolated communities and evaluate any associations with respiratory morbidity. METHODS: We performed a cross-sectional evaluation of 98 FN children (81 with complete data) aged 3 years or younger, living in 4 FN communities in the Sioux Lookout region of Northern Ontario. We performed medical chart reviews and administered questionnaires. We performed a housing inspection, including quantifying the interior surface area of mould (SAM). We monitored air quality for 5 days in each home and quantified the contaminant loading of settled floor dust, including endotoxin. We analyzed associations between IEQ variables and respiratory conditions using univariable and multivariable analyses. RESULTS: Participants had a mean age of 1.6 years and 21% had been admitted to hospital for respiratory infections before age 2 years. Houses were generally crowded (mean occupancy 6.6 [standard deviation 2.6, range 3-17] people per house). Serious housing concerns were frequent, including a lack of functioning controlled ventilation. The mean SAM in the occupied space was 0.2 m2. In multivariable modelling, there was evidence of an association of LRTI with log endotoxin (p = 0.07) and age (p = 0.02), and for upper respiratory tract infections, with SAM (p = 0.07) and age (p = 0.03). Wheeze with colds was associated with log endotoxin (p = 0.03) and age (p = 0.04). INTERPRETATION: We observed poor housing conditions and an association between endotoxin and wheezing in young FN children living in Northern Ontario.


Subject(s)
Air Pollution, Indoor , Housing Quality , Indigenous Canadians , Respiratory Tract Infections/ethnology , Respiratory Tract Infections/epidemiology , Rural Population/statistics & numerical data , Child, Preschool , Cross-Sectional Studies , Dust , Endotoxins/adverse effects , Female , Fungi , Humans , Male , Ontario/epidemiology , Ventilation
6.
Environ Sci Technol ; 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34328323

ABSTRACT

Subway PM2.5 can be substantially sourced from the operation of the system itself. Improvements in subway air quality may be possible by examining the potential to reduce these emissions. To this end, PM2.5 was measured on the trains and station platforms of the Toronto subway system. A comparison with previously published data for this system reveals significant changes in below ground platform PM2.5. A reduction of nearly one-third (ratio (95% CI): 0.69 (0.63, 0.75)) in PM2.5 from 2011 to 2018 appears to have resulted from a complete modernization of the rolling stock on one subway line. In contrast, below ground platform PM2.5 for another line increased by a factor of 1.48 (95% CI; 1.42, 1.56). This increase may be related to an increase in emergency brake applications, the resolution of which coincided with a large decrease in PM2.5 concentrations on that line. Finally, platform PM2.5 in two newly opened stations attained, within one year of operation, typical concentrations of the neighboring platforms installed in 1963. Combined, these findings suggest that the production of platform PM2.5 is localized and hence largely freshly emitted. Further, PM2.5 changed across this subway system due to changes in its operation and rolling stock. Thus, similar interventions applied intentionally may prove to be equally effective in reducing PM2.5. Moreover, establishing a network of platform PM2.5 monitors is recommended to monitor ongoing improvements and identify impacts of future system changes on subway air quality. This would result in a better understanding of the relationship between the operations and air quality of subways.

7.
Environ Sci Technol ; 55(14): 9750-9760, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34241996

ABSTRACT

Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per µg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Canada , Environmental Monitoring , Humans , Oxidative Stress , Particulate Matter/analysis
8.
Environ Sci Technol ; 53(5): 2799-2810, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30735615

ABSTRACT

Few studies have characterized within-city spatial variations in the oxidative potential of fine particulate air pollution (PM2.5). In this study, we evaluated multiple measures of PM2.5 oxidative potential across Toronto, Canada (2016-2017), including glutathione/ascorbate-related oxidative potential (OPGSH and OPAA) and dithiothreitol depletion (OPDTT). Integrated 2-week samples were collected from 67 sites in summer and 42 sites in winter. Multivariable linear models were developed to predict OP based on various land use/traffic factors, and PM2.5 metals and black carbon were also examined. All three measures of PM2.5 oxidative potential varied substantially across Toronto. OPAA and OPDTT were primarily associated with traffic-related components of PM2.5 (i.e., Fe, Cu, and black carbon) whereas OPGSH was not a strong marker for traffic during either season. During summer, multivariable models performed best for OPAA ( RCV2 = 0.48) followed by OPDTT ( RCV2 = 0.32) and OPGSH ( RCV2 = 0.22). During winter, model performance was best for OPDTT ( RCV2 = 0.55) followed by OPGSH ( RCV2 = 0.50) and OPAA ( RCV2 = 0.23). Model parameters varied between seasons, and between-season differences in PM2.5 mass concentrations were weakly/moderately correlated with seasonal differences in OP. Our findings highlight substantial within-city variations in PM2.5 oxidative potential. More detailed information is needed on local sources of air pollution to improve model performance.


Subject(s)
Air Pollutants , Particulate Matter , Canada , Cities , Environmental Monitoring , Oxidative Stress
9.
Epidemiology ; 28(3): 329-337, 2017 05.
Article in English | MEDLINE | ID: mdl-28177951

ABSTRACT

BACKGROUND: Biomass burning is an important source of ambient fine particulate air pollution (PM2.5) in many regions of the world. METHODS: We conducted a time-stratified case-crossover study of ambient PM2.5 and hospital admissions for myocardial infarction (MI) in three regions of British Columbia, Canada. Daily hospital admission data were collected between 2008 and 2015 and PM2.5 data were collected from fixed site monitors. We used conditional logistic regression models to estimate odds ratios (ORs) describing the association between PM2.5 and the risk of hospital admission for MI. We used stratified analyses to evaluate effect modification by biomass burning as a source of ambient PM2.5 using the ratio of levoglucosan/PM2.5 mass concentrations. RESULTS: Each 5 µg/m increase in 3-day mean PM2.5 was associated with an increased risk of MI among elderly subjects (≥65 years; OR = 1.06, 95% CI: 1.03, 1.08); risk was not increased among younger subjects. Among the elderly, the strongest association occurred during colder periods (<6.44°C); when we stratified analyses by tertiles of monthly mean biomass contributions to PM2.5 during cold periods, ORs of 1.19 (95% CI: 1.04, 1.36), 1.08 (95% CI: 1.06, 1.09), and 1.04 (95% CI: 1.03, 1.06) were observed in the upper, middle, and lower tertiles (Ptrend = 0.003), respectively. CONCLUSION: Short-term changes in ambient PM2.5 were associated with an increased risk of MI among elderly subjects. During cold periods, increased biomass burning contributions to PM2.5 may modify its association with MI.


Subject(s)
Air Pollution/statistics & numerical data , Biomass , Myocardial Infarction/epidemiology , Particulate Matter , Aged , Air Pollution/analysis , British Columbia/epidemiology , Case-Control Studies , Female , Glucose/analogs & derivatives , Glucose/analysis , Humans , Linear Models , Logistic Models , Male , Middle Aged , Odds Ratio , Particulate Matter/analysis , Particulate Matter/chemistry , Risk Factors
10.
Environ Sci Technol ; 51(10): 5713-5720, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28440082

ABSTRACT

System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM2.5 (PM = particulate matter), PM10, ultrafine particles, black carbon, and the elemental composition of PM2.5. Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM2.5 and 21.2%, 11.3% and 11.5% of daily PM2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM2.5 and its elemental components to a metro commuter's daily exposure.


Subject(s)
Air Pollutants/analysis , Air Pollution , Canada , Cities , Environmental Exposure , Environmental Monitoring , Particle Size , Particulate Matter , Transportation , Vehicle Emissions
11.
Environ Sci Technol ; 49(1): 597-605, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25469563

ABSTRACT

Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.


Subject(s)
Cities , Environmental Exposure/analysis , Environmental Monitoring , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis , Air Pollution/analysis , Canada , Geography , Humans , Multivariate Analysis , Particle Size
12.
Environ Res ; 142: 46-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26093783

ABSTRACT

A large landfill fire occurred in Iqaluit, Canada in spring/summer 2014. Air quality data were collected to characterize emissions as well as potential threats to public health. Criteria pollutants were monitored (PM2.5, O3, NO2) along with dioxins/furans, polycyclic aromatic hydrocarbons, and volatile organic compounds. Median daily dioxin/furan concentrations were 66-times higher during active burning (0.2 pg/m(3) Toxic Equivalency Quotient (TEQ)) compared to after the fire was extinguished (0.003 pg/m(3) TEQ). Other pollutants changed less dramatically. Our findings suggest that airborne concentrations of potentially harmful substances may be elevated during landfill fires even when criteria air pollutants remain largely unchanged.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Fires , Particulate Matter/analysis , Canada
13.
Environ Pollut ; 356: 124353, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866318

ABSTRACT

The development of high-resolution spatial and spatiotemporal models of air pollutants is essential for exposure science and epidemiological applications. While fixed-site sampling has conventionally provided input data for statistical predictive models, the evolving mobile monitoring method offers improved spatial resolution, ideal for measuring pollutants with high spatial variability such as ultrafine particles (UFP). The Quebec Air Pollution Exposure and Epidemiology (QAPEE) study measured and modelled the spatial and spatiotemporal distributions of understudied pollutants, such as UFPs, black carbon (BC), and brown carbon (BrC), along with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in Quebec City, Canada. We conducted a combined fixed-site (NO2 and O3) and mobile monitoring (PM2.5, BC, BrC, and UFPs) campaign over 10-months. Mobile monitoring routes were monitored on a weekly basis between 8am-10am and designed using location/allocation modelling. Seasonal fixed-site sampling campaigns captured continuous 24-h measurements over two-week periods. Generalized Additive Models (GAMs), which combined data on pollution concentrations with spatial, temporal, and spatiotemporal predictor variables were used to model and predict concentration surfaces. Annual models for PM2.5, NO2, O3 as well as seven of the smallest size fractions in the UFP range, had high out of sample predictive accuracy (range r2: 0.54-0.86). Varying spatial patterns were observed across UFP size ranges measured as Particle Number Counts (PNC). The monthly spatiotemporal models for PM2.5 (r2 = 0.49), BC (r2 = 0.27), BrC (r2 = 0.29), and PNC (r2 = 0.49) had moderate or moderate-low out of sample predictive accuracy. We conducted a sensitivity analysis and found that the minimum number of 'n visits' (mobile monitoring sessions) required to model annually representative air pollution concentrations was between 24 and 32 visits dependent on the pollutant. This study provides a single source of exposure models for a comprehensive set of air pollutants in Quebec City, Canada. These exposure models will feed into epidemiological research on the health impacts of ambient UFPs and other pollutants.

14.
PLoS One ; 18(11): e0294040, 2023.
Article in English | MEDLINE | ID: mdl-37992001

ABSTRACT

A recent study of the health of Indigenous children in four First Nations Communities in remote northwestern Ontario found that 21% of children had been admitted to hospital for respiratory infections before age 2 years. Here we report a detailed analysis of the housing conditions in these communities. We employed a variety of statistical methods, including linear regression, mixed models, and logistic regression, to assess the correlations between housing conditions and loadings of biocontaminants (dust mite allergens, fungal glucan, and endotoxin) and indoor concentrations of PM2.5, CO2, benzene, and formaldehyde. The houses (n = 101) were crowded with an average of approximately 7 people. Approximately 27% of the homes had sustained CO2 concentrations above 1500 ppm. Most homes had more than one smoker. Commercial tobacco smoking and the use of non-electric heating (e.g., wood, oil) were associated with increased fine particle concentrations. Over 90% of the homes lacked working Heat Recovery Ventilators (HRVs), which was associated with increased fine particle concentrations and higher CO2. Of the 101 homes, 12 had mold damage sufficient to increase the relative risk of respiratory disease. This resulted from roof leaks, through walls or around the windows due to construction defects or lack of maintenance. A similar percentage had mold resulting from condensation on windows. Endotoxin loadings were much higher than any previous study in Canada. This work provides evidence for the need for more effort to repair existing houses and to ensure the HRVs are properly installed and maintained.


Subject(s)
Air Pollution, Indoor , Housing , Humans , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Endotoxins/analysis , Ontario/epidemiology , Indigenous Canadians
15.
Environ Res ; 118: 118-23, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22776327

ABSTRACT

BACKGROUND: Few studies have examined the acute cardiorespiratory effects of specific volatile organic compound (VOC) exposures from traffic pollution. METHODS: A cross-over study was conducted among 42 healthy adults during summer 2010 in Ottawa, Canada. Participants cycled for 1-h along high and low-traffic routes and VOC exposures were determined along each route. Lung function, exhaled nitric oxide, and heart rate variability were monitored before cycling and 1-4h after the start of cycling. Bayesian hierarchical models were used to examine the relationship between 26 VOCs and acute changes in clinical outcomes adjusted for potential confounding factors. RESULTS: Each inter-quartile range (IQR) increase in propane/butane exposure was associated with a 2.0 millisecond (ms) (95% CI: 0.65, 3.2) increase in SDNN (standard deviation of normal-to-normal intervals), a 24 ms(2) (95% CI: 6.6, 41) increase in HF (high frequency power), and a 65 ms(2) (95% CI: 11, 118) increase in LF (low frequency power) in the hours following cycling. IQR increases in ethane and isoprene were associated with a 5.8 ms (95% CI: -9.8, -1.7): decrease in SDNN and a 24 ms(2) (95% CI: -44, -7.9) decrease in HF, respectively. IQR increases in benzene exposure were associated with a 1.7 ppb (95% CI: 1.1, 2.3) increase in exhaled nitric oxide and each IQR increase in 3-methylhexane exposure was associated with a 102 mL (95% CI: -157, -47) decrease in forced expiratory volume in 1-s. CONCLUSIONS: Exposure to traffic-related VOCs may contribute to acute changes in lung function, inflammation, or heart rate variability.


Subject(s)
Air Pollutants/toxicity , Bicycling , Environmental Exposure , Heart Rate/drug effects , Lung/drug effects , Urban Population , Volatile Organic Compounds/toxicity , Bayes Theorem , Humans , Lung/physiology
16.
J Air Waste Manag Assoc ; 61(2): 142-56, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21387932

ABSTRACT

The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Adolescent , Adult , Asthma/epidemiology , Child , Epidemiological Monitoring , Female , Health Status , Humans , Male , Nitrogen Dioxide/analysis , Ontario/epidemiology , Ozone/analysis , Surveys and Questionnaires , Volatile Organic Compounds/analysis
17.
J Air Waste Manag Assoc ; 61(3): 324-38, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21416760

ABSTRACT

The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Adult , Asthma/physiopathology , Child , Female , Humans , Male , Nitrogen Dioxide/analysis , Ontario , Ozone/analysis , Particulate Matter/analysis , Patient Selection , Quality Control , Research Design , Surveys and Questionnaires , Vital Capacity , Volatile Organic Compounds/analysis
18.
Nanotoxicology ; 15(9): 1253-1278, 2021 11.
Article in English | MEDLINE | ID: mdl-35007468

ABSTRACT

Microplastic (MP) pollution in the environment is increasing, leading to growing concerns about human exposures and the subsequent impact on health. Although marine MP research has received significant attention in recent years, only a few studies have attempted characterization of MP in air and examined the MP uptake and influence via inhalation on human health. Moreover, the methods used for MP characterization in the marine environment require further optimization to be applicable to MP in the air. This paper details method for collecting and characterizing MP < 2.5 µm in air samples for the purposes of toxicological assessment. The first phase of the study evaluated (a) the suitability of various filter types to collect respirable airborne MP <2.5 µm, and; (b) the ability of Raman and enhanced darkfield-hyperspectral spectroscopy methods to identify MP reference standards collected from spiked filters and in cells after exposure to reference MP. In the second phase, these methods were employed to characterize MP <2.5 µm in personal, indoor and outdoor filter air samples and in cells following exposure to filter extracted material. The results showed the presence of a variety of MP in the respirable size fraction (0.1-1 µm aerodynamic diameter). Silver membrane filters were found not suitable for collecting and analyzing MP <2.5 µm. While it was easy to detect reference MP in cells post-exposure, the identity of only two types of air-borne MP was confirmed in cells. The study highlighted possible sources of artifacts and inconsistencies in analyzing airborne MP.


Subject(s)
Microplastics , Particulate Matter , Environmental Monitoring/methods , Humans , Microplastics/toxicity , Particulate Matter/analysis , Plastics
19.
Sci Rep ; 11(1): 12790, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140605

ABSTRACT

Little is known about the early-life cardiovascular health impacts of fine particulate air pollution (PM2.5) and oxidant gases. A repeated-measures panel study was used to evaluate associations between outdoor PM2.5 and the combined oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) and retinal vessel diameter and blood pressure in children living in a region impacted by residential biomass burning. A median of 6 retinal vessel and blood pressure measurements were collected from 64 children (ages 4-12 years), for a total of 344 retinal measurements and 432 blood pressure measurements. Linear mixed-effect models were used to estimate associations between PM2.5 or Ox (same-day, 3-day, 7-day, and 21-day means) and retinal vessel diameter and blood pressure. Interactions between PM2.5 and Ox were also examined. Ox was inversely associated with retinal arteriolar diameter; the strongest association was observed for 7-day mean exposures, where each 10 ppb increase in Ox was associated with a 2.63 µm (95% CI - 4.63, - 0.63) decrease in arteriolar diameter. Moreover, Ox modified associations between PM2.5 and arteriolar diameter, with weak inverse associations observed between PM2.5 and arteriolar diameter only at higher concentrations of Ox. Our results suggest that outdoor air pollution impacts the retinal microvasculature of children and interactions between PM2.5 and Ox may play an important role in determining the magnitude and direction of these associations.


Subject(s)
Air Pollution/analysis , Biomass , Blood Pressure/physiology , Retinal Vessels/anatomy & histology , Child , Child, Preschool , Confidence Intervals , Environmental Exposure/analysis , Female , Humans , Male , Particulate Matter/analysis
20.
J Expo Sci Environ Epidemiol ; 31(4): 628-640, 2021 07.
Article in English | MEDLINE | ID: mdl-32678304

ABSTRACT

BACKGROUND: Exposure to traffic-related air pollution (TRAP) is associated with increased incidence of several cardiopulmonary diseases. The elevated TRAP exposures of commuting environments can result in significant contributions to daily exposures. OBJECTIVES: To assess the personal TRAP exposures (UFPs, BC, PM2.5, and PM10) of the bus transit systems of Toronto, Ottawa, and Vancouver, Canada. Personal exposure models estimated the contribution of bus commuting to daily TRAP exposures. Associations between bus type and riding exposures and bus stop/station type and waiting exposures were estimated. RESULTS: Bus commuting (4.6% of the day) contributed ~59%(SD = 15%), 60%(SD = 20%), and 57%(SD = 18%) of daily PM2.5-Ba and 70%(SD = 19%), 64%(SD = 15%), and 70%(SD = 15%) of daily PM2.5-Fe, in Toronto, Ottawa, and Vancouver, respectively. Enclosed bus stations were found to be hotspots of PM2.5 and BC. Buses with diesel particulate filters (DPFs) and hybrid diesel/electric propulsion were found to have significantly lower in-bus PM2.5, UFP, and BC relative to 1983-2003 diesel buses in each city with the exception of UFP in Vancouver. SIGNIFICANCE: Personal exposures for traffic-related air pollutants were assessed for three Canadian bus transit systems. In each system, bus commuting was estimated to contribute significantly toward daily exposures of fine-fraction Ba and Fe as well as BC. Exposures while riding were associated with bus type for several pollutants in each city. These associations suggest the use of hybrid diesel/electric buses equipped with diesel particulate filters have improved air quality for riders.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Canada , Cities , Environmental Exposure/analysis , Environmental Monitoring , Humans , Motor Vehicles , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL