Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Avian Pathol ; 52(2): 108-118, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36453684

ABSTRACT

Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1ß gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFß, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Clostridium perfringens/genetics , Clostridium Infections/veterinary , Chickens , Virulence , Enteritis/veterinary , Poultry Diseases/pathology , Immunity , Anti-Inflammatory Agents/metabolism
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261178

ABSTRACT

Mast cells (MCs) are critical for initiating inflammatory responses to pathogens including viruses. Type I interferons (IFNs) that exert their antiviral functions by interacting with the type I IFN receptor (IFNAR) play a central role in host cellular responses to viruses. Given that virus-induced excessive toxic inflammatory responses are associated with aberrant IFNAR signaling and considering MCs are an early source of inflammatory cytokines during viral infections, we sought to determine whether IFNAR signaling plays a role in antiviral cytokine responses of MCs. IFNAR-intact, IFNAR-blocked, and IFNAR-knockout (IFNAR-/-) bone-marrow-derived MCs (BMMCs) were treated in vitro with a recombinant vesicular stomatitis virus (rVSVΔm51) to assess cytokine production by these cells. All groups of MCs produced the cytokines interleukin-6 and tumor necrosis factor-α in response to rVSVΔm51. However, production of the cytokines was lowest in IFNAR-intact cells as compared with IFNAR-/- or IFNAR-blocked cells at 20 h post-stimulation. Surprisingly, rVSVΔm51 was capable of infecting BMMCs, but functional IFNAR signaling was able to protect these cells from virus-induced death. This study showed that BMMCs produced pro-inflammatory cytokines in response to rVSVΔm51 and that IFNAR signaling was required to down-modulate these responses and protect the cells from dying from viral infection.


Subject(s)
Bone Marrow Cells/pathology , Cytokines/biosynthesis , Cytoprotection , Mast Cells/virology , Receptor, Interferon alpha-beta/metabolism , Signal Transduction , Vesiculovirus/physiology , Animals , Cell Death , Down-Regulation , Interleukin-6/metabolism , Kinetics , Mice, Knockout , Time Factors , Tumor Necrosis Factor-alpha/metabolism
3.
Avian Pathol ; 48(4): 288-310, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31063007

ABSTRACT

Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.


Subject(s)
Chick Embryo/immunology , Chickens/immunology , Immunity, Innate , Poultry Diseases/prevention & control , Animals , Poultry Diseases/immunology
4.
Clin Infect Dis ; 67(suppl_1): S66-S77, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30376091

ABSTRACT

Background: As a risk-mitigation strategy to minimize paralytic polio following withdrawal of Sabin type 2 from the oral poliovirus vaccine in April 2016, a single full dose or 2 fractional doses of inactivated poliovirus vaccine (IPV) are recommended. However, limited knowledge exists on long-term persistence of immune memory following 1- or 2-dose IPV schedules. Methods: We examined induction and maintenance of immune memory following single- vs 2-dose IPV schedules, either full-dose intramuscular or fractional-dose intradermal, in rhesus macaques. Humoral responses, bone marrow-homing antibody-secreting plasma cells, and blood-circulating/lymph node-homing memory B cells were examined longitudinally. Results: A single dose of IPV, either full or fractional, induced binding antibodies and memory B cells in all vaccinated macaques, despite failing to induce neutralizing antibodies (NT Abs) in many of them. However, these memory B cells declined rapidly, reaching below detection in the systemic circulation by 5 months; although a low frequency of memory B cells was detectable in draining lymph nodes of some, but not all, animals. By contrast, a 2-dose vaccination schedule, either full or fractional, efficiently induced NT Abs in all animals along with bone marrow-homing plasma cells and memory B cells. These memory B cells persisted in the systemic circulation for up to 16 months, the maximum duration tested after the second dose of vaccination. Conclusions: Two doses of IPV, regardless of whether fractional or full, are more effective than a single dose for inducing long-lasting memory B cells.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Immunization Schedule , Poliomyelitis/immunology , Poliovirus/immunology , Vaccination , Animals , Humans , Macaca mulatta , Models, Animal , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Oral/administration & dosage
5.
Cell Tissue Res ; 369(3): 541-554, 2017 09.
Article in English | MEDLINE | ID: mdl-28550425

ABSTRACT

Invariant natural killer T (iNKT) cells play important roles in antimicrobial defense and immune-regulation. We have previously shown that iNKT cells express certain toll-like receptors (TLR), and that TLR co-stimulation of iNKT cells in the presence of suboptimal concentrations of T cell receptor (TCR) agonists enhances cellular activation. In the present study, we investigated the regulatory effects of CpG oligonucleotides in mouse primary hepatic and splenic iNKT cells and in DN32.D3 iNKT cells. We show that CpG treatment of iNKT cells in the presence of higher concentrations of TCR agonists (α-GalCer or anti-CD3 mAb) results in the up-regulation of TLR9 in iNKT cells with a concurrent reduction in their cellular activation, as assessed by their production of IL-2, IL-4 and IFN-γ compared with controls. CpG-mediated down-regulation of iNKT cell activation has been found to depend, at least in part, on signaling by MyD88, a critical adapter moiety downstream of TLR9 signaling. Mechanistically, iNKT cells treated with CpG in the presence of TCR agonists show inhibition of MAPK signaling as determined by the levels of ERK1/2 and p38 MAPKs. Furthermore, CpG treatment leads to an increased induction of phosphatases, DUSP1 and SHP-1, that seem to impede MAPK and TCR signaling, resulting in the negative regulation of iNKT cell activation. Our findings therefore suggest a novel regulatory role for CpG in iNKT cells in the mediation of a negative feedback mechanism to control overactive iNKT cell responses and hence to avoid undesirable excessive immunopathology.


Subject(s)
Lymphocyte Activation/drug effects , Natural Killer T-Cells/immunology , Oligodeoxyribonucleotides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , CD3 Complex/metabolism , Down-Regulation/drug effects , Galactosylceramides/pharmacology , Interferon-gamma/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Natural Killer T-Cells/drug effects , Phosphoprotein Phosphatases/metabolism , Receptors, Antigen, T-Cell/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Transcription, Genetic/drug effects , Up-Regulation/drug effects
6.
J Virol ; 88(24): 13990-4001, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25253340

ABSTRACT

UNLABELLED: Pattern recognition receptors (PRR) sense certain molecular patterns uniquely expressed by pathogens. Retinoic-acid-inducible gene I (RIG-I) is a cytosolic PRR that senses viral nucleic acids and induces innate immune activation and secretion of type I interferons (IFNs). Here, using influenza vaccine antigens, we investigated the consequences of activating the RIG-I pathway for antigen-specific adaptive immune responses. We found that mice immunized with influenza vaccine antigens coadministered with 5'ppp-double-stranded RNA (dsRNA), a RIG-I ligand, developed robust levels of hemagglutination-inhibiting antibodies, enhanced germinal center reaction, and T follicular helper cell responses. In addition, RIG-I activation enhanced antibody affinity maturation and plasma cell responses in the draining lymph nodes, spleen, and bone marrow and conferred protective immunity against virus challenge. Importantly, activation of the RIG-I pathway was able to reduce the antigen requirement by 10- to 100-fold in inducing optimal influenza-specific cellular and humoral responses, including protective immunity. The effects induced by 5'ppp-dsRNA were significantly dependent on type I IFN and IPS-1 (an adapter protein downstream of the RIG-I pathway) signaling but were independent of the MyD88- and TLR3-mediated pathways. Our results show that activation of the RIG-I-like receptor pathway programs the innate immunity to achieve qualitatively and quantitatively enhanced protective cellular adaptive immune responses even at low antigen doses, and this indicates the potential utility of RIG-I ligands as molecular adjuvants for viral vaccines. IMPORTANCE: The recently discovered RNA helicase family of RIG-I-like receptors (RLRs) is a critical component of host defense mechanisms responsible for detecting viruses and triggering innate antiviral cytokines that help control viral replication and dissemination. In this study, we show that the RLR pathway can be effectively exploited to enhance adaptive immunity and protective immune memory against viral infection. Our results show that activation of the RIG-I pathway along with influenza vaccination programs the innate immunity to induce qualitatively and quantitatively superior protective adaptive immunity against pandemic influenza viruses. More importantly, RIG-I activation at the time of vaccination allows induction of robust adaptive responses even at low vaccine antigen doses. These results highlight the potential utility of exploiting the RIG-I pathway to enhance viral-vaccine-specific immunity and have broader implications for designing better vaccines in general.


Subject(s)
Adjuvants, Immunologic/administration & dosage , DEAD-box RNA Helicases/metabolism , Germinal Center/immunology , Influenza Vaccines/immunology , RNA, Double-Stranded/administration & dosage , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antibodies, Viral/blood , Cell Proliferation , DEAD Box Protein 58 , Disease Models, Animal , Hemagglutination Inhibition Tests , Influenza Vaccines/administration & dosage , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , T-Lymphocytes, Helper-Inducer/physiology , Vaccination/methods
7.
Avian Pathol ; 44(6): 463-9, 2015.
Article in English | MEDLINE | ID: mdl-26395945

ABSTRACT

Probiotics have been used to control Salmonella colonization in the chicken intestine. Recently, we demonstrated that certain selected Lactobacillus isolates were able to reduce Salmonella infection in the chicken spleen and liver as well as down-regulated Salmonella pathogenicity island 1 virulence gene expression in the chicken caecum. To further understand the mechanisms through which Lactobacillus protected chickens from Salmonella infection, the present study has investigated the Lactobacillus isolate(s)-induced host immune response of chickens to Salmonella enterica serovar Typhimurium infection. A thorough examination of cytokine gene expression in the ileum, caecal tonsils, and spleen on days 1 and 3 post-Salmonella infection showed a dynamic spatial and temporal response to Salmonella infection and Lactobacillus treatments. In most instances, it was evident that treatment of chickens with Lactobacillus isolates could significantly attenuate Salmonella-induced changes in the gene expression profile. These included the genes encoding pro-inflammatory cytokines [lipopolysaccharide-induced TNF factor, interleukin (IL)-6, and IL-8], T helper 1 cytokines [IL-12 and interferon (IFN)-γ], and T helper 2 cytokines (IL-4 and IL-10). Another important observation from the present investigation was that the response induced by a combination of Lactobacillus isolates was generally more effective than that induced by a single Lactobacillus isolate. Our results show that administration of certain selected Lactobacillus isolates can effectively modulate Salmonella-induced cytokine gene expression, and thus help reduce Salmonella infection in chickens.


Subject(s)
Chickens , Cytokines/genetics , Lactobacillus/physiology , Poultry Diseases/prevention & control , Salmonella Infections, Animal/prevention & control , Animals , Cecum/immunology , Female , Ileum/immunology , Liver/immunology , Poultry Diseases/immunology , Poultry Diseases/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Spleen/immunology
8.
Poult Sci ; 103(8): 103911, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38909503

ABSTRACT

Eubiotics are water and/or feed additives used in poultry to promote gut health and control enteric burden of pathogens, including Clostridium perfringens. While several eubiotic compounds (ECs) are being introduced commercially, it is essential to devise an in vitro model to screen these compounds to assess their immunomodulatory and antimicrobial properties prior to their testing in vivo. A chicken macrophage cell-line (MQ-NCSU) was used to develop an in vitro model to screen the immunological and anti-C. perfringens properties of 10 ECs: monobutyrin, monolaurin, calcium butyrate, tributyrin, carvacrol, curcumin, green tea extract, rosemary extract, monomyristate, and tartaric acid. An optimal concentration for each EC was selected by measuring the effect on viability of MQ-NCSU cells. Cells were then treated with ECs for 6, 12, and 24 h. and expression of interferon-gamma (IFNγ), interleukin (IL)-1ß, IL-6, IL-10, transforming growth factor-beta (TGFß) and cluster of differentiation (CD40) genes, as well as major histocompatibility complex (MHC)-II protein were evaluated. At 6 h post-stimulation, monobutyrin, calcium butyrate, and green tea extract treatments induced a significant downregulation of IFNγ, IL-6, or IL-1ß gene transcription and MHC-II expression, while the IL-10 or TGFß gene expression in these treatments as well as those receiving rosemary extract and tartaric acid was significantly upregulated, when compared to control, suggesting immunomodulatory properties of these ECs. Finally, pretreatment of macrophages with these selected 5 ECs for 24 h followed by C. perfringens infection showed that monobutyrin, green tea extract, rosemary extract, and calcium butyrate treatments can inhibit bacterial growth significantly at 12 and/or 24 h post-infection, when compared to the control. Collectively, our findings show that ECs possessing immunomodulatory and anti-C. perfringens properties can be selected using an in vitro avian macrophage cell-based model so that such ECs can further be tested in vivo for their disease prevention efficacy.

9.
Poult Sci ; 103(1): 103237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38011819

ABSTRACT

Compelling evidence indicates that immunological maturation of the gut-associated lymphoid tissues, including the bursa of Fabricius, is dependent upon antigenic stimulation post-hatch. In view of these data, the present study investigated the impact of exposing the immune system of chick embryos to antigenic stimuli, via in ovo delivery of poultry-specific lactobacilli, on the expression of genes associated with early bursal development and maturation. Broiler line embryonated eggs were inoculated with 106 and 107 colony-forming units (CFUs) of an individual or a mixture of Lactobacillus species, including L. crispatus (C25), L. animalis (P38), L. acidophilus (P42), and L. reuteri (P43), at embryonic day 18 (ED18). The bursa of Fabricius was collected from pre-hatched chicks (ED20) to measure the expression levels of various immune system genes. The results revealed that L. acidophilus and the mixture of Lactobacillus species at the dose of 106 CFU consistently elicited higher expression of genes responsible for B cell development, differentiation, and survival (B cell activating factor (BAFF), BAFF-receptor (BAFF-R)), and antibody production (interleukin (IL)-10) and diversification (TGF-ß). Similar expression patterns were also noted in T helper (Th) cell-associated cytokine genes, including Th1-type cytokines (interferon (IFN)-γ and IL-12p40), Th2-type cytokines (IL-4 and IL-13) and Th17 cytokine (IL-17). Overall, these results suggest that the supplementation of poultry-specific lactobacilli to chick embryos might be beneficial for accelerating the development and immunological maturation of the bursa of Fabricius. However, further studies are required to determine if the changes in gene expression are associated with the developmental trajectory and phenotypes of bursal cells.


Subject(s)
Chickens , Probiotics , Chick Embryo , Animals , Bursa of Fabricius/metabolism , Lactobacillus/metabolism , Ovum/metabolism , Lactobacillus acidophilus , Cytokines/metabolism , Probiotics/pharmacology
10.
Vet Immunol Immunopathol ; 269: 110717, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340537

ABSTRACT

Clostridium septicum is one of the major causative agents of clostridial dermatitis (CD), an emerging disease of turkeys, characterized by sudden deaths and necrotic dermatitis. Despite its economic burden on the poultry industry, the immunopathological changes and pathogen-specific immune responses are poorly characterized. Here, we used three strains of C. septicum, namely Str. A1, Str. B1 and Str. C1, isolated from CD field outbreaks, to experimentally infect turkeys to evaluate local (skin and muscle) and systemic (spleen) pathological and immunological responses. Results showed that while all three strains produced an acute disease, Str. A1 and B1 caused significantly higher mortality when compared to Str. C1. Gross and histopathology evaluation showed that birds infected with Str. A1 and B1 had severe inflammatory, edematous, granulomatous and necrotic lesions in the skin, muscle and spleen, while these lesions produced by Str. C1 were relatively less severe and mostly confined to skin and/or muscle. Immune gene expression in these tissues showed that Str. B1-infected birds had significantly higher expression of interleukin (IL)-1ß, IL-6 and interferon (IFN)γ genes compared to uninfected control, suggesting a robust inflammatory response both locally as well as systemically. The transcription of IL-1ß and IFNγ in the muscle or spleen of Str. A1-infected birds and IL-1ß in the skin of Str. C1-infected group was also significantly higher than control. Additionally, Str. A1 or B1-infected groups also had significantly higher IL-4 transcription in these tissues, while birds infected with all three strains developed C. septicum-specific serum antibodies. Furthermore, splenic cellular immunophenotyping in the infected turkeys showed a marked reduction in CD4+ cells. Collectively, it can be inferred that host responses against C. septicum involve an acute inflammatory response along with antibody production and that the disease severity seem to depend on the strain of C. septicum involved in CD in turkeys.


Subject(s)
Clostridium Infections , Clostridium septicum , Dermatitis , Poultry Diseases , Humans , Animals , Clostridium septicum/physiology , Clostridium Infections/veterinary , Turkeys , Clostridium , Inflammation/veterinary , Dermatitis/veterinary , Immunity
11.
Viral Immunol ; 37(2): 89-100, 2024 03.
Article in English | MEDLINE | ID: mdl-38301195

ABSTRACT

Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 µg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.


Subject(s)
Herpesviridae , Vaccines , Animals , Chickens , CD8-Positive T-Lymphocytes , CD28 Antigens , Adjuvants, Immunologic , Oligodeoxyribonucleotides , Meat
12.
PLoS One ; 19(4): e0302555, 2024.
Article in English | MEDLINE | ID: mdl-38683795

ABSTRACT

Clostridial dermatitis (CD), caused by Clostridium septicum, is an emerging disease of increasing economic importance in turkeys. Currently, there are no effective vaccines for CD control. Here, two non-toxic domains of C. septicum alpha toxin, namely ntATX-D1 and ntATX-D2, were identified, cloned, and expressed in Escherichia coli as recombinant subunit proteins to investigate their use as potential vaccine candidates. Experimental groups consisted of a Negative control (NCx) that did not receive C. septicum challenge, while the adjuvant-only Positive control (PCx), ntATX-D1 immunization (D1) and ntATX-D2 immunization (D2) groups received C. septicum challenge. Turkeys were immunized subcutaneously with 100 µg of protein at 7, 8 and 9 weeks of age along with an oil-in-water nano-emulsion adjuvant, followed by C. septicum challenge at 11 weeks of age. Results showed that while 46.2% of birds in the PCx group died post-challenge, the rate of mortality in D1- or D2-immunization groups was 13.3%. The gross and histopathological lesions in the skin, muscle and spleen showed that the disease severity was highest in PCx group, while the D2-immunized birds had significantly lower lesion scores when compared to PCx. Gene expression analysis revealed that PCx birds had significantly higher expression of pro-inflammatory cytokine genes in the skin, muscle and spleen than the NCx group, while the D2 group had significantly lower expression of these genes compared to PCx. Peripheral blood cellular analysis showed increased frequencies of activated CD4+ and/or CD8+ cells in the D1 and D2-immunized groups. Additionally, the immunized turkeys developed antigen-specific serum IgY antibodies. Collectively, these findings indicate that ntATX proteins, specifically the ntATX-D2 can be a promising vaccine candidate for protecting turkeys against CD and that the protection mechanisms may include downregulation of C. septicum-induced inflammation and increased CD4+ and CD8+ cellular activation.


Subject(s)
Bacterial Toxins , Clostridium Infections , Clostridium septicum , Dermatitis , Poultry Diseases , Recombinant Proteins , Turkeys , Animals , Turkeys/immunology , Clostridium septicum/immunology , Clostridium Infections/prevention & control , Clostridium Infections/immunology , Clostridium Infections/veterinary , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/microbiology , Bacterial Toxins/immunology , Recombinant Proteins/immunology , Recombinant Proteins/administration & dosage , Dermatitis/prevention & control , Dermatitis/immunology , Dermatitis/veterinary , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Immunization
13.
Avian Dis ; 67(2): 186-196, 2023 06.
Article in English | MEDLINE | ID: mdl-37556298

ABSTRACT

Host cellular responses against Clostridium perfringens (CP), the causative agent of necrotic enteritis (NE) in chickens, are poorly understood. In the present study, we first tested the NE-producing ability of seven netB+ CP strains (CP5, CP18, CP26, CP64, CP67, CP68, and NCNE-1), using an experimental infection model of broiler chickens. Evaluation of intestinal gross lesions showed that all the strains, except CP5, were able to produce NE, while CP26 and CP64 strains produced relatively more severe lesions when compared with other groups. Next, cellular responses in the cecal tonsil (CT), bursa of Fabricius, and spleen were evaluated in chickens infected with strains representing variation in the level of virulence, namely, avirulent CP5, virulent CP18, and a relatively more virulent CP26 strain. Immunophenotyping analysis showed that CT or splenic macrophage frequencies were significantly higher in CP18- and CP26-infected chickens compared with uninfected controls, while the frequencies of γδ T-cells and B-cells in the CT of CP26-infected chickens were significantly higher than those in the uninfected, CP5- or CP18-infected groups. The T-cell analysis showed that chickens infected with CP18 and CP26 had a significantly higher number of splenic CD4+ and CD8+ T-cells expressing CD44 and CD28 activation molecules, while CP26-infected chickens also had significantly increased CT frequency of these activated CD4+ and CD8+ T-cells when compared with uninfected or CP5-infected groups. Collectively, our findings suggested that cellular responses, including activation of T-cells, are selectively induced against virulent CP strains and that the NE-producing characteristics of this pathogen may influence the outcome of immunity to NE.


Respuestas inmunes celulares en tejidos linfoides de pollos de engorde infectados experimentalmente con cepas de Clostridium perfringens productoras de enteritis necrótica. Las respuestas celulares del huésped contra Clostridium perfringens (CP), el agente causante de la enteritis necrótica (NE) en pollos, son poco conocidas. En el presente estudio, primero se analizó la capacidad de producción de enteritis necrótica de siete cepas de C. perfringens netB+ (CP5, CP18, CP26, CP64, CP67, CP68 y NCNE-1), utilizando un modelo de infección experimental de pollos de engorde. La evaluación de las lesiones macroscópicas intestinales mostró que todas las cepas, excepto CP5, podían producir enteritis necrótica, mientras que las cepas CP26 y CP64 produjeron lesiones relativamente más severas en comparación con los otros grupos. Posteriormente, se evaluaron las respuestas celulares en las tonsilas cecales (CT), la bolsa de Fabricio y en el bazo de pollos infectados con cepas que representan variaciones en el nivel de virulencia, por ejemplo las cepas CP5 avirulenta, CP18 virulenta y la cepa CP26 relativamente más virulenta. El análisis de inmunofenotipado mostró que las frecuencias de los macrófagos esplénicos o de las tonsilas cecales fueron significativamente más altas en los pollos infectados con las cepas CP18 y CP26 en comparación con los controles no infectados, mientras que las frecuencias de células T γd y células B en tonsilas cecales de los pollos infectados con la cepa CP26 fueron significativamente más altas que las de los pollos de los grupos no infectados, o infectados con las cepas CP5 o CP18. El análisis de células T mostró que los pollos infectados con las cepas CP18 y CP26 tenían un número significativamente mayor de células esplénicas T CD4+ y CD8+ que expresaban moléculas de activación CD44 y CD28, mientras que los pollos infectados con la cepa CP26 también tenían una frecuencia significativamente mayor en las tonsilas cecales de estas células T CD4+ y CD8+ activadas en comparación con grupos no infectados o infectados con la cepa CP5. En conjunto, estos hallazgos sugirieron que las respuestas celulares, incluida la activación de las células T, se inducen selectivamente contra las cepas virulentas de C. perfringens y que las características productoras de enteritis necrótica de este patógeno pueden influir en el resultado de la inmunidad contra la enteritis necrótica.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Clostridium perfringens/physiology , Clostridium Infections/veterinary , Clostridium Infections/pathology , Chickens , CD8-Positive T-Lymphocytes/pathology , Enteritis/veterinary , Enteritis/pathology , Poultry Diseases/pathology , Lymphoid Tissue/pathology , Immunity, Cellular , Necrosis/veterinary
14.
Microorganisms ; 11(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985344

ABSTRACT

Necrotic enteritis (NE) is an economically important disease of chickens. We have recently shown that inflammatory responses in chickens inoculated orally with virulent Clostridium perfringens were spatially regulated. Here, we used previously virulence-characterized netB+C. perfringens strains, avirulent CP5 and virulent CP18 and CP26, to assess the severity of NE and immune responses in broiler chickens when inoculated intracloacally. The results showed that CP18- and CP26-infected birds had a reduced weight gain and developed milder/less severe NE lesions, as determined by the gross lesions scores, suggesting a subclinical-grade infection. Gene expression analysis in infected birds revealed three statistically significant observations compared to uninfected-control: (1) Increased expression of anti-inflammatory/immunoregulatory interleukin (IL)-10/transforming growth factor (TGF)ß in cecal tonsil (CT) and bursa of Fabricius in the CP18/CP26-infected groups. (2) Increased CT transcription of pro-inflammatory IL-1ß, IL-6 and interferon (IFN)γ and decreased Harderian gland (HG) expression of IFNγ in the CP18/CP26-infected birds. (3) Increased HG or bursal expression of IL-4 and IL-13 in CP5-infected birds. Collectively, intracloacal C. perfringens inoculation seems to induce a highly regulated inflammatory response in the CT and other mucosal lymphoid organs and an intracloacal infection model may be useful in evaluating immune responses in chickens with subclinical NE.

15.
Vaccines (Basel) ; 11(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36851171

ABSTRACT

Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 µg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1ß, and lung IFNγ genes, the IL-1ß gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10µg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life.

16.
Vaccine ; 41(15): 2514-2523, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36894394

ABSTRACT

In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 µg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 µg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.


Subject(s)
Chickens , Marek Disease , Animals , Poly I-C/pharmacology , Toll-Like Receptor 3 , Interleukin-13 , CD28 Antigens , Herpesvirus 1, Meleagrid , Interferon-gamma , Vaccination/veterinary
17.
Avian Dis ; 67(1): 80-88, 2023 03.
Article in English | MEDLINE | ID: mdl-37140115

ABSTRACT

Clostridial dermatitis (CD), caused by Clostridium septicum and Clostridium perfringens, is an economically important emerging disease of turkeys characterized by sudden deaths and necrotic dermatitis. Immune responses in CD-affected commercial turkeys are poorly understood. In the present study, C. septicum was isolated from CD-affected commercial turkeys during a recent outbreak, and the tissues (skin, muscle, and spleen) were collected and analyzed for immune gene expression, along with samples from clinically healthy birds. The results showed that CD-affected turkeys had significantly higher levels of IL-1ß, IL-6, IFNγ, and iNOS transcripts in the skin, muscle, and spleen tissues compared to healthy birds. Affected turkeys also had a significantly elevated transcription of toll-like receptor (TLR21) gene in the skin and spleen tissues, suggesting a role for this receptor in the immune recognition. The expression of IL-4 and IL-13 genes in the spleen and muscle was also significantly higher in the affected birds. Additional birds from the same affected and healthy farms examined for serology revealed that the CD-affected turkeys had significantly higher levels of serum IgM and IgY antibodies. Furthermore, in vitro stimulation of MQ-NCSU macrophages with C. septicum led to a significant transcriptional upregulation of IL-1ß and IFNγ genes, while the IL-10 gene expression was downregulated. The surface expression of MHC-II protein and cellular production of nitric oxide were also significantly increased in the C. septicum-stimulated macrophages, indicating cellular activation. Collectively, our findings suggest that the host responses in CD-affected turkeys involve a robust inflammatory response as well as a response mediated by IL4/IL-13 cytokines that may aid in antibody-mediated immunity.


Evaluación de la respuesta inmune en pavos comerciales afectados por dermatitis clostridial. La dermatitis clostridial (CD), causada por Clostridium septicum y Clostridium perfringens, es una enfermedad emergente económicamente importante de los pavos caracterizada por muerte súbitas y dermatitis necrótica. Se conoce poco acerca de las respuestas inmunitarias en pavos comerciales afectados por dermatitis clostridial. En el presente estudio, se aisló C. septicum de pavos comerciales afectados por dermatitis clostridial durante un brote reciente, y los tejidos (piel, músculo y bazo) se recolectaron y analizaron para determinar la expresión de genes inmunitarios junto con muestras de aves clínicamente sanas. Los resultados mostraron que los pavos afectados por dermatitis clostridial tenían niveles significativamente más altos de transcritos de IL-1ß, IL-6, IFNγ, and iNOS en los tejidos de la piel, los músculos y el bazo en comparación con las aves sanas. Los pavos afectados también tenían una transcripción significativamente elevada del gene del receptor tipo toll (TLR21) en los tejidos de la piel y el bazo, lo que sugiere un papel de este receptor en el reconocimiento inmunitario. La expresión de los genes IL-4 e IL-13 en el bazo y el músculo también fue significativamente mayor en las aves afectadas. Aves adicionales de las mismas granjas afectadas y sanas que fueron examinadas por serología revelaron que los pavos afectados por dermatitis clostridial tenían niveles significativamente más altos de anticuerpos séricos IgM e IgY. Además, la estimulación in vitro de los macrófagos MQ-NCSU con C. septicum condujo a una regulación transcripcional significativamente al alza de los genes IL-1ß and IFNγ, mientras que la expresión del gene IL-10 se reguló a la baja. La expresión superficial de la proteína MHC-II y la producción celular de óxido nítrico también aumentaron significativamente en los macrófagos estimulados por C. septicum, lo que indica activación celular. Colectivamente, estos hallazgos sugieren que las respuestas del huésped en pavos afectados por dermatitis clostridial implican una respuesta inflamatoria robusta, así como una respuesta mediada por citoquinas IL4/IL-13 que pueden ayudar en la inmunidad mediada por anticuerpos.


Subject(s)
Clostridium Infections , Dermatitis , Poultry Diseases , Animals , Clostridium Infections/veterinary , Turkeys , Interleukin-13 , Poultry Diseases/epidemiology , Clostridium , Dermatitis/veterinary , Immunity
18.
Microorganisms ; 11(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36677405

ABSTRACT

Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.

20.
Viruses ; 15(10)2023 10 17.
Article in English | MEDLINE | ID: mdl-37896880

ABSTRACT

Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Gallid , Poultry Diseases , Viral Vaccines , Animals , Chickens , Adjuvants, Vaccine , Herpesvirus 1, Gallid/physiology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , Vaccination/veterinary , Vaccines, Synthetic , Herpesvirus 1, Meleagrid/genetics , Turkeys
SELECTION OF CITATIONS
SEARCH DETAIL