Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.125
Filter
1.
Immunity ; 57(3): 559-573.e6, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38479361

ABSTRACT

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.


Subject(s)
Benzeneacetamides , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Piperidones , Animals , Mice , Viral Proteins/metabolism , Glycoproteins/metabolism , Antibodies, Viral
2.
EMBO J ; 42(18): e114654, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37551430

ABSTRACT

Eukaryotic cells use chromatin marks to regulate the initiation of DNA replication. The origin recognition complex (ORC)-associated protein ORCA plays a critical role in heterochromatin replication in mammalian cells by recruiting the initiator ORC, but the underlying mechanisms remain unclear. Here, we report crystal and cryo-electron microscopy structures of ORCA in complex with ORC's Orc2 subunit and nucleosomes, establishing that ORCA orchestrates ternary complex assembly by simultaneously recognizing a highly conserved peptide sequence in Orc2, nucleosomal DNA, and repressive histone trimethylation marks through an aromatic cage. Unexpectedly, binding of ORCA to nucleosomes prevents chromatin array compaction in a manner that relies on H4K20 trimethylation, a histone modification critical for heterochromatin replication. We further show that ORCA is necessary and sufficient to specifically recruit ORC into chromatin condensates marked by H4K20 trimethylation, providing a paradigm for studying replication initiation in specific chromatin contexts. Collectively, our findings support a model in which ORCA not only serves as a platform for ORC recruitment to nucleosomes bearing specific histone marks but also helps establish a local chromatin environment conducive to subsequent MCM2-7 loading.


Subject(s)
Chromatin , Heterochromatin , Animals , Chromatin/genetics , Heterochromatin/genetics , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Nucleosomes/genetics , Cryoelectron Microscopy , DNA Replication , Transcription Factors/genetics , Replication Origin , Mammals/genetics
3.
Nature ; 598(7881): 521-525, 2021 10.
Article in English | MEDLINE | ID: mdl-34526719

ABSTRACT

Hepatitis C virus (HCV) infection is a causal agent of chronic liver disease, cirrhosis and hepatocellular carcinoma in humans, and afflicts more than 70 million people worldwide. The HCV envelope glycoproteins E1 and E2 are responsible for the binding of the virus to the host cell, but the exact entry process remains undetermined1. The majority of broadly neutralizing antibodies block interaction between HCV E2 and the large extracellular loop (LEL) of the cellular receptor CD81 (CD81-LEL)2. Here we show that low pH enhances the binding of CD81-LEL to E2, and we determine the crystal structure of E2 in complex with an antigen-binding fragment (2A12) and CD81-LEL (E2-2A12-CD81-LEL); E2 in complex with 2A12 (E2-2A12); and CD81-LEL alone. After binding CD81, residues 418-422 in E2 are displaced, which allows for the extension of an internal loop consisting of residues 520-539. Docking of the E2-CD81-LEL complex onto a membrane-embedded, full-length CD81 places the residues Tyr529 and Trp531 of E2 proximal to the membrane. Liposome flotation assays show that low pH and CD81-LEL increase the interaction of E2 with membranes, whereas structure-based mutants of Tyr529, Trp531 and Ile422 in the amino terminus of E2 abolish membrane binding. These data support a model in which acidification and receptor binding result in a conformational change in E2 in preparation for membrane fusion.


Subject(s)
Hepacivirus/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Tetraspanin 28/chemistry , Tetraspanin 28/metabolism , Virus Internalization , Animals , Antibodies, Neutralizing/immunology , Cell Membrane/chemistry , Cell Membrane/metabolism , HEK293 Cells , Hepacivirus/chemistry , Hepacivirus/genetics , Humans , Leontopithecus , Membrane Fusion , Models, Molecular , Receptors, Virus/immunology , Tetraspanin 28/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
4.
Pharmacol Rev ; 76(2): 199-227, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351075

ABSTRACT

Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Extracellular Vesicles , Humans , Depressive Disorder, Major/pathology , Extracellular Vesicles/pathology , Liquid Biopsy , Biomarkers
5.
Blood ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046779

ABSTRACT

Current HLH-2004-based diagnostic criteria for familial hemophagocytic lymphohistiocytosis (FHL) are based on expert opinion. Here we performed a case-control study to test and possibly improve these clinical criteria. We also developed two complementary expert opinion-based diagnostic strategies for FHL in patients with signs/symptoms suggestive of HLH, based on genetic and cellular cytotoxicity assays. The cases (n=366) were children <16 years with verified familial and/or genetic FHL (n=341) or Griscelli syndrome type 2 (GS2) (n=25); 276 from the HLH-94/HLH-2004 databases and 90 from the Italian HLH Registry. All fulfilled the HLH-94/HLH-2004 patient inclusion criteria. Controls were 374 children with systemic-onset juvenile idiopathic arthritis (sJIA) and 329+361 children in two cohorts with febrile infections that could be confused with HLH and sepsis, respectively. To provide complete data sets, multiple imputations were performed. The optimal model, based on the number of diagnostic criteria fulfilled from 17 variables studied, reveled almost similar diagnostic thresholds as the existing criteria, with accuracy 99.1% (sensitivity 97.1%; specificity 99.5%). Notably, assessment of the original HLH-2004 criteria revealed accuracy 97.4% (sensitivity 99.0%; specificity 97.1%). Since cellular cytotoxicity assays here constitute a separate diagnostic strategy, HLH-2004 criteria without NK-cell function was also studied which showed accuracy 99.0% (sensitivity 96.2%; specificity 99.5%). Thus, we conclude that the HLH-2004 criteria (without NK-cell function) have significant validity in their current form when tested against severe infections or sJIA. It is important to exclude underlying malignancies and atypical infections. In addition, complementary cellular and genetic diagnostic guidelines can facilitate necessary confirmation of clinical diagnosis.

6.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103641

ABSTRACT

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Subject(s)
Bacterial Proteins , G-Quadruplexes , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Protein Biosynthesis , RNA, Bacterial , RNA, Messenger , Humans , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Inflammation/microbiology , Ligands , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , RNA Stability , RNA, Bacterial/genetics , RNA, Messenger/genetics , THP-1 Cells , Transcription, Genetic/drug effects
7.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38240593

ABSTRACT

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Histones/genetics , Histones/metabolism , Nucleosomes , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Virus Latency/genetics , Antigens, Viral/genetics , Antigens, Viral/metabolism , Terminal Repeat Sequences/genetics , Gene Expression Regulation, Viral
8.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38174935

ABSTRACT

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Subject(s)
Hepacivirus , Hepatitis C , Immune Evasion , Lipoproteins, HDL , Viral Envelope Proteins , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Apolipoproteins/metabolism , Hepacivirus/pathogenicity , Hepatitis C/immunology , Hepatitis C/virology , Hepatitis C Antibodies/immunology , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Viral Envelope Proteins/metabolism , HEK293 Cells
9.
PLoS Pathog ; 19(11): e1011771, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934757

ABSTRACT

Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and greater risks of other complications, including malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol(SH)-linked alkylation for the metabolic (SLAM) sequencing and Cleavage Under Target & Release Using Nuclease analysis (CUT&RUN), we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNA polymerase II with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitors, OTX015 and MZ1, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.


Subject(s)
Herpesviridae Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Interleukin-6/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cytokines/metabolism , Herpesviridae Infections/metabolism , Chromatin/metabolism , Epigenesis, Genetic , Cell Cycle Proteins/metabolism
10.
Plant Cell ; 34(12): 4760-4777, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36069647

ABSTRACT

Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.


Subject(s)
Arabidopsis , Histones , Nucleoplasmins/chemistry , Nucleoplasmins/genetics , Nucleoplasmins/metabolism , Histones/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Nucleosomes/metabolism , Histone Chaperones/genetics , Arabidopsis/genetics , Arabidopsis/metabolism
11.
J Bacteriol ; 206(5): e0002424, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38591913

ABSTRACT

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE: Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.


Subject(s)
Iron , Klebsiella pneumoniae , Siderophores , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , Siderophores/metabolism , Iron/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Enterobactin/metabolism , Biological Transport , Carrier Proteins
12.
Am J Respir Cell Mol Biol ; 70(6): 507-518, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512807

ABSTRACT

Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.


Subject(s)
Cell Movement , Kisspeptins , Myocytes, Smooth Muscle , Platelet-Derived Growth Factor , Receptors, Kisspeptin-1 , Signal Transduction , rhoA GTP-Binding Protein , Humans , Cell Movement/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Kisspeptins/metabolism , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Receptors, Kisspeptin-1/metabolism , Receptors, Kisspeptin-1/genetics , rhoA GTP-Binding Protein/metabolism , Receptors, G-Protein-Coupled/metabolism , cdc42 GTP-Binding Protein/metabolism , Airway Remodeling , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cells, Cultured , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Cell Proliferation
13.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38529552

ABSTRACT

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Subject(s)
Asthma , Bronchoconstriction , Down-Regulation , Myocytes, Smooth Muscle , Protein Phosphatase 2 , Asthma/metabolism , Asthma/pathology , Humans , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Animals , Mice , Down-Regulation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Bronchoconstriction/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/drug effects , Male , Bronchi/pathology , Bronchi/metabolism , Bronchi/drug effects , Calcium/metabolism , Female , Mice, Inbred C57BL
14.
Cancer ; 130(14): 2416-2439, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38687639

ABSTRACT

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.


Subject(s)
Histiocytosis, Langerhans-Cell , Humans , Histiocytosis, Langerhans-Cell/drug therapy
15.
Antimicrob Agents Chemother ; 68(2): e0076623, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38193667

ABSTRACT

New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Antitubercular Agents/pharmacology , Isoniazid , Tuberculosis/prevention & control
16.
Biochem Biophys Res Commun ; 705: 149756, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38460440

ABSTRACT

Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.


Subject(s)
Myocardial Infarction , Stilbenes , Rats , Animals , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Resveratrol/pharmacology , Stilbenes/pharmacology , Stilbenes/therapeutic use , Lipopolysaccharides/pharmacology , Ligands , Molecular Docking Simulation , Rats, Wistar , Myocardial Infarction/drug therapy , Diet
17.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004715

ABSTRACT

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Subject(s)
Biofortification , Malnutrition , Micronutrients , Triticum , Triticum/metabolism , Triticum/genetics , Micronutrients/metabolism , Malnutrition/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Zinc/metabolism , Nutritive Value
18.
Am J Gastroenterol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016385

ABSTRACT

BACKGROUND: The prevalence of Metabolic dysfunction associated fatty liver disease (MAFLD) and its complication, MAFLD-related acute on chronic liver failure (MAFLD-ACLF), is rising. Yet, factors determining patient outcomes in MAFLD-ACLF remain understudied. METHODS: Patients with MAFLD-ACLF were recruited from the AARC registry. The diagnosis of MAFLD-ACLF was made when the treating unit had identified the etiology of chronic liver disease (CLD) as MAFLD (or previous nomenclature such as NAFLD, NASH, or NASH-cirrhosis). Patients with coexisting other etiologies of CLD (such as alcohol, HBV, HCV, etc.) were excluded. Data was randomly split into derivation (n=258) and validation (n=111) cohorts at a 70:30 ratio. The primary outcome was 90-day mortality. Only the baseline clinical, laboratory features and severity scores were considered. RESULTS: The derivation group had 258 patients; 60% were male, with a mean age of 53. Diabetes was noted in 27%, and hypertension in 29%. The dominant precipitants included viral hepatitis (HAV and HEV, 32%), drug-induced injury (DILI, 29%) and sepsis (23%). MELD-Na and AARC scores upon admission averaged 32±6 and 10.4±1.9. At 90 days, 51% survived. Non-viral precipitant, diabetes, bilirubin, INR, and encephalopathy were independent factors influencing mortality. Adding diabetes and precipitant to MELD-Na and AARC scores, the novel MAFLD-MELD-Na score (+12 for diabetes, +12 for non-viral precipitant) and MAFLD-AARC score (+5 for each) were formed. These outperformed the standard scores in both cohorts. CONCLUSION: Almost half of MAFLD-ACLF patients die within 90 days. Diabetes and non-viral precipitants such as DILI and sepsis lead to adverse outcomes. The new MAFLD-MELD-Na and MAFLD-AARC scores provide reliable 90-day mortality predictions for MAFLD-ACLF patients.

19.
Small ; 20(17): e2307955, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148312

ABSTRACT

Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1), with a detection limit of 10 µg mL-1. Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.


Subject(s)
Oxygen , Polymers , Oxygen/metabolism , Humans , Polymers/chemistry , Tumor Microenvironment , Cell Line, Tumor , Animals , Ruthenium/chemistry , Mice , Biosensing Techniques/methods , Intracellular Space/metabolism
20.
J Cardiovasc Electrophysiol ; 35(3): 478-487, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185923

ABSTRACT

New-onset atrial fibrillation (NOAF) in COVID-19 raises significant clinical and public health issues. This systematic review and meta-analysis aims to compile and analyze the current literature on NOAF in COVID-19 and give a more comprehensive understanding of the prevalence and outcomes of NOAF in COVID-19. A comprehensive literature search was carried out using several databases. The random effect model using inverse variance method and DerSimonian and Laird estimator of Tua2 was used to calculate the pooled prevalence and associated 95% confidence interval (CI). Results for outcome analysis were presented as odds ratios (ORs) with 95% CI and pooled using the Mantel-Haenszel random-effects model. The pooled prevalence of NOAF in COVID-19 was 7.8% (95% CI: 6.54%-9.32%),a pooled estimate from 30 articles (81 929 COVID-19 patients). Furthermore, our analysis reported that COVID-19 patients with NOAF had a higher risk of developing severe disease compared with COVID-19 patients without a history of atrial fibrillation (OR = 4.78, 95% CI: 3.75-6.09) and COVID-19 patients with a history of pre-existing atrial fibrillation (OR = 2.75, 95% CI: 2.10-3.59). Similarly, our analysis also indicated that COVID-19 patients with NOAF had a higher risk of all-cause mortality compared with, COVID-19 patients without a history of atrial fibrillation (OR = 3.83, 95% CI: 2.99-4.92) and COVID-19 patients with a history of pre-existing atrial fibrillation (OR = 2.32, 95% CI: 1.35-3.96). The meta-analysis did not reveal any significant publication bias. The results indicate a strong correlation between NOAF and a higher risk of severe illness and mortality. These results emphasize the importance of careful surveillance, early detection, and customized NOAF management strategies to improve clinical outcomes for COVID-19 patients.


Subject(s)
Atrial Fibrillation , COVID-19 , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Risk Factors , Odds Ratio , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL