Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
J Phys Chem A ; 128(30): 6324-6335, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39028862

ABSTRACT

Charge-transfer (CT) excited states are crucial to organic light-emitting diodes (OLEDs), particularly to those based on thermally activated delayed fluorescence (TADF). However, accurately modeling CT states remains challenging, even with modern implementations of (time-dependent) density functional theory [(TD-)DFT], especially in a dielectric environment. To identify shortcomings and improve the methodology, we previously established the STGABS27 benchmark set with highly accurate experimental references for the adiabatic energy gap between the lowest singlet and triplet excited states (ΔEST). Here, we diversify this set to the STGABS27-EMS benchmark by including experimental emission energies (Eem) and use this new set to (re)-evaluate various DFT-based approaches. Surprisingly, these tests demonstrate that a state-specific (un)restricted open-shell Kohn-Sham (U/ROKS) DFT coupled with a polarizable continuum model for perturbative state-specific nonequilibrium solvation (ptSS-PCM) provides exceptional accuracy for predicting Eem over a wide range of density functionals. In contrast, the main workhorse of the field, Tamm-Dancoff-approximated TD-DFT (TDA-DFT) paired with the same ptSS-PCM, is distinctly less accurate and strongly functional-dependent. More importantly, while TDA-DFT requires the choice of two very different density functionals for good performance on either ΔEST or Eem, the time-independent U/ROKS/PCM approaches deliver excellent accuracy for both quantities with a wide variety of functionals.

2.
J Am Chem Soc ; 144(30): 13704-13716, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35868238

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are prominent lead structures for organic optoelectronic materials. This work describes the synthesis of three B,S-doped PAHs with heptacene-type scaffolds via nucleophilic aromatic substitution reactions between fluorinated arylborane precursors and 1,2-(Me3SiS)2C6H4/1,8-diazabicyclo[5.4.0]undec-7-ene (72-92% yield). All compounds contain tricoordinate B atoms at their 7,16-positions, kinetically protected by mesityl (Mes) substituents. PAHs 1/2 feature two/four S atoms at their 5,18-/5,9,14,18-positions; PAH 3 is a 6,8,15,17-tetrafluoro derivative of 2. For comparison, we also prepared the skewed naphtho[2,3-c]pentaphene-type isomer 4. The simultaneous presence of electron-accepting B atoms and electron-donating S atoms results in a redox-ambiphilic behavior; the radical cations [1•]+ and [2•]+ were characterized by electron paramagnetic resonance spectroscopy. Several low-lying charge-transfer states exist, some of which (especially S-to-B and Mes-to-B transitions) compete on the excited-state potential-energy surface. Consistent with the calculated state characters and oscillator strengths, this competition results in a spread of fluorescence quantum yields (2-27%). The optoelectronic properties of 1 change drastically upon addition of Ag+ ions: while the color of 1 in CH2Cl2 changes bathochromically from yellow to red (λmax from 463 to 486 nm; -0.13 eV), the emission band shifts hypsochromically from 606 to 545 nm (+0.23 eV), and the fluorescence quantum yield increases from 12 to 43%. According to titration experiments, higher order adducts [Agn1m]n+ are formed. As a suitable system for modeling Ag+ complexation, our calculations predict a dimer structure (n = m = 2) with Ag2S4 core, approximately linear S-Ag-S fragments, and Ag-Ag interaction. The computed optoelectronic properties of [Ag212]2+ agree well with the experimentally observed ones.

3.
J Am Chem Soc ; 143(29): 10865-10871, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34255517

ABSTRACT

Fullerenes and diamondoids are at the core of nanoscience. Comparable monodisperse silicon analogues are scarce. Herein, we report the synthesis of the parent siladodecahedrane, which represents the largest Platonic solid. It shares its pattern of pentagonal faces with the smallest fullerene, C20, and its saturated, H-terminated skeleton with diamondoids. Similar to endofullerenes, the silicon cage encapsulates a chloride ion ([Cl@Si20H20]-); similar to diamondoids, its Si-H termini offer a wealth of opportunities for further functionalization. Mere treatment with chloromethanes leads to the perchlorinated cluster [Cl@Si20Cl20]-. Both compounds were characterized by mass spectrometry, X-ray crystallography, NMR spectroscopy, and quantum-chemical calculations. The experimentally determined 35Cl resonances of the endohedral chloride ions are particularly diagnostic to probe the Cl- → Si20 interaction strength as a function of the different surface substituents, as we have proven by high-level computational analyses.

4.
Chemistry ; 27(14): 4627-4639, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33078853

ABSTRACT

The noncovalent interactions between azides and oxygen-containing moieties are investigated through a computational study based on experimental findings. The targeted synthesis of organic compounds with close intramolecular azide-oxygen contacts yielded six new representatives, for which X-ray structures were determined. Two of those compounds were investigated with respect to their potential conformations in the gas phase and a possible significantly shorter azide-oxygen contact. Furthermore, a set of 44 high-quality, gas-phase computational model systems with intermolecular azide-pnictogen (N, P, As, Sb), -chalcogen (O, S, Se, Te), and -halogen (F, Cl, Br, I) contacts are compiled and investigated through semiempirical quantum mechanical methods, density functional approximations, and wave function theory. A local energy decomposition (LED) analysis is applied to study the nature of the noncovalent interaction. The special role of electrostatic and London dispersion interactions is discussed in detail. London dispersion is identified as a dominant factor of the azide-donor interaction with mean London dispersion energy-interaction energy ratios of 1.3. Electrostatic contributions enhance the azide-donor coordination motif. The association energies range from -1.00 to -5.5 kcal mol-1 .

5.
J Phys Chem Lett ; 15(31): 8065-8077, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39083761

ABSTRACT

Efficient OLEDs need to quickly convert singlet and triplet excitons into photons. Molecules with an inverted singlet-triplet energy gap (INVEST) are promising candidates for this task. However, typical INVEST molecules have drawbacks like too low oscillator strengths and excitation energies. High-throughput screening could identify suitable INVEST molecules, but existing methods are problematic: The workhorse method TD-DFT cannot reproduce gap inversion, while wave function-based methods are too slow. This study proposes a state-specific method based on unrestricted Kohn-Sham DFT with common hybrid functionals. Tuned on the new INVEST15 benchmark set, this method achieves an error of less than 1 kcal/mol, which is traced back to error cancellation between spin contamination and dynamic correlation. Applied to the larger and structurally diverse NAH159 set in a black-box fashion, the method maintains a small error (1.2 kcal/mol) and accurately predicts gap signs in 83% of cases, confirming its robustness and suitability for screening workflows.

6.
J Phys Chem Lett ; 12(35): 8470-8480, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34449230

ABSTRACT

The adiabatic energy gap between the lowest singlet and triplet excited states ΔEST is a central property of thermally activated delayed fluorescence (TADF) emitters. Since these states are dominated by a charge-transfer character, causing strong orbital-relaxation and environmental effects, an accurate prediction of ΔEST is very challenging, even with modern quantum-chemical excited-state methods. Addressing this major challenge, we present an approach that combines spin-unrestricted (UKS) and restricted open-shell Kohn-Sham (ROKS) self-consistent field calculations with a polarizable-continuum model and range-separated hybrid functionals. Tests on a new representative benchmark set of 27 TADF emitters with accurately known ΔEST values termed STGABS27 reveal a robust and unprecedented performance with a mean absolute deviation of only 0.025 eV (∼0.5 kcal/mol) and few deviations greater than 0.05 eV (∼1 kcal/mol), even in electronically challenging cases. Requiring only two geometry optimizations per molecule at the ROKS/UKS level in a compact double-ζ basis, the approach is computationally efficient and can routinely be applied to molecules with more than 100 atoms.

SELECTION OF CITATIONS
SEARCH DETAIL