Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Langmuir ; 33(50): 14244-14251, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29148786

ABSTRACT

We observed the growth phase transition of n-alkanethiols (AT), CH3(CH2)n-1SH, n = 4-16, directly implanted on a bare Si(111) surface, forming an AT monolayer. These monolayers were characterized with static water-contact angle, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray fine-structure spectroscopy, and grazing-angle reflection absorption Fourier-transform infrared spectroscopy. The integrated spectral results indicated that the implanted n-AT molecules formed a self-oriented and densely packed monolayer through formation of an S-Si bond. With the number of carbons in the alkyl chain at six or more, namely beginning at hexanethiol, the molecular monolayer began to develop an orientation-ordered structure, which is clearly shorter than that for AT monolayers on Au and Ag. This result implies that, with a stronger molecule-substrate interaction, an ordered molecular monolayer can form with a short chain.

2.
Nat Commun ; 14(1): 21, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36596763

ABSTRACT

Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO2) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO2:NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO2:NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides.

4.
ACS Appl Mater Interfaces ; 9(42): 36897-36906, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28984127

ABSTRACT

We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH3NH3)2PbI2Cl2·CH3NH3I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH3NH3I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

5.
ACS Appl Mater Interfaces ; 8(37): 24933-45, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27540859

ABSTRACT

Oxide-free silicon chemistry has been widely studied using wet-chemistry methods, but for emerging applications such as molecular electronics on silicon, nanowire-based sensors, and biochips, these methods may not be suitable as they can give rise to defects due to surface contamination, residual solvents, which in turn can affect the grafted monolayer devices for practical applications. Therefore, there is a need for a cleaner, reproducible, scalable, and environmentally benign monolayer grafting process. In this work, monolayers of alkylthiols were deposited on oxide-free semiconductor surfaces using supercritical carbon dioxide (SCCO2) as a carrier fluid owing to its favorable physical properties. The identity of grafted monolayers was monitored with Fourier transform infrared (FTIR) spectroscopy, high-resolution X-ray photoelectron spectroscopy (HRXPS), XPS, atomic force microscopy (AFM), contact angle measurements, and ellipsometry. Monolayers on oxide-free silicon were able to passivate the surface for more than 50 days (10 times than the conventional methods) without any oxide formation in ambient atmosphere. Application of the SCCO2 process was further extended by depositing alkylthiol monolayers on fragile and brittle 1D silicon nanowires (SiNWs) and 2D germanium substrates. With the recent interest in SiNWs for biological applications, the thiol-passivated oxide-free silicon nanowire surfaces were also studied for their biological response. Alkylthiol-functionalized SiNWs showed a significant decrease in cell proliferation owing to their superhydrophobicity combined with the rough surface morphology. Furthermore, tribological studies showed a sharp decrease in the coefficient of friction, which was found to be dependent on the alkyl chain length and surface bond. These studies can be used for the development of cost-effective and highly stable monolayers for practical applications such as solar cells, biosensors, molecular electronics, micro- and nano- electromechanical systems, antifouling agents, and drug delivery.


Subject(s)
Carbon Dioxide/chemistry , Hydrogen , Semiconductors , Silicon , Sulfhydryl Compounds , Surface Properties
6.
Adv Mater ; 28(37): 8240-8247, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27384240

ABSTRACT

Carrier-type modulation is demonstrated in 2D transition metal dichalcogenides as n-type monolayer MoSe2 is converted to nondegenerate p-type monolayer Mo1-x Wx Se2 through isoelectronic doping. Although the alloys are mesoscopically uniform, the p-type conduction in monolayer Mo1-x Wx Se2 appears to originate from the upshift of the valenceband maximum toward the Fermi level at highly localized "W-rich" regions in the lattice.

SELECTION OF CITATIONS
SEARCH DETAIL