Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Brain Behav Immun ; 114: 94-110, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37557963

ABSTRACT

The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.

2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958854

ABSTRACT

Lithium (Li) salts are commonly used as medications for bipolar disorders. In addition to its therapeutic value, Li is also being increasingly used as a battery component in modern electronic devices. Concerns about its toxicity and negative impact on the heart have recently been raised. We investigated the effects of long-term Li treatment on the heart, liver, and kidney in mice. Sixteen C57BL/6J mice were randomly assigned to receive oral administration of Li carbonate (n = 8) or act as a control group (n = 8) for 12 weeks. We evaluated the cardiac electrical activity, morphology and function, and pathways contributing to remodelling. We assessed the multi-organ toxicity using histopathology techniques in the heart, liver, and kidney. Our findings suggest that mice receiving Li had impaired systolic function and ventricular repolarisation and were more susceptible to arrhythmias under adrenergic stimulation. The Li treatment caused an increase in the cardiomyocytes' size, the modulation of the extracellular signal-regulated kinase (ERK) pathway, along with some minor tissue damage. Our findings revealed a cardiotoxic effect of Li at therapeutic dosage, along with some histopathological alterations in the liver and kidney. In addition, our study suggests that our model could be used to test potential treatments for Li-induced cardiotoxicity.


Subject(s)
Antimanic Agents , Lithium , Mice , Animals , Lithium/toxicity , Mice, Inbred C57BL , Antimanic Agents/therapeutic use , Lithium Compounds , Cardiotoxicity/drug therapy
3.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762153

ABSTRACT

Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.


Subject(s)
Hypothyroidism , Thyroxine , Mice , Animals , Thyroxine/metabolism , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Hippocampus/metabolism , Dietary Supplements , Nerve Tissue Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
4.
Int J Mol Sci ; 23(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35742991

ABSTRACT

The opening of the ATP-sensitive mitochondrial potassium channel (mitok-ATP) is a common goal of cardioprotective strategies in the setting of acute and chronic myocardial disease. The biologically active thyroid hormone (TH), 3-5-3-triiodothyronine (T3), has been indicated as a potential activator of mitoK-ATP but the underlying mechanisms are still elusive. Here we describe a novel role of T3 in the transcriptional regulation of mitoK and mitoSur, the recently identified molecular constituents of the channel. To mimic human ischemic heart damage, we used a rat model of a low T3 state as the outcome of a myocardial ischemia/reperfusion event, and neonatal rat cardiomyocytes (NRCM) challenged with hypoxia or H2O2. Either in the in vivo or in vitro models, T3 administration to recover the physiological concentrations was able to restore the expression level of both the channel subunits, which were found to be downregulated under the stress conditions. Furthermore, the T3-mediated transcriptional activation of mitoK-ATP in the myocardium and NRCM was associated with the repression of the TH-inactivating enzyme, deiodinase 3 (Dio3), and an up-regulation of the T3-responsive miR-133a-3p. Mechanistically, the loss and gain of function experiments and reporter gene assays performed in NRCM, have revealed a new regulatory axis whereby the silencing of Dio3 under the control of miR-133a-3p drives the T3-dependent modulation of cardiac mitoK and mitoSur transcription.


Subject(s)
MicroRNAs , Mitochondria, Heart , Adenosine Triphosphate/metabolism , Animals , Hydrogen Peroxide/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria, Heart/metabolism , Potassium Channels/metabolism , Rats , Triiodothyronine/metabolism , Triiodothyronine/pharmacology
5.
Int J Obes (Lond) ; 44(6): 1428-1439, 2020 06.
Article in English | MEDLINE | ID: mdl-31792335

ABSTRACT

BACKGROUND/OBJECTIVES: It is well established that obesity is an independent risk factor for cardiac death. In particular various cardiac alterations have been described in obese patients such as long QT on ECG, impaired diastolic filling of the left ventricle (LV), and all-type arrhythmias. In the present study, the above alterations were all reproduced in a mouse model of fat diet-induced obesity. ANIMALS/METHODS: In C57BL6 mice fed on a high fat (n = 20, HF-group) or standard diet (n = 20, C-group) for 13 weeks, balanced by sex and age, we examined heart morphology and function by high-frequency ultrasounds and electric activity by surface ECG. Besides, the autonomic sympathovagal balance (heart-rate variability) and the arrhythmogenic susceptibility to adrenergic challenge (i.p. isoproterenol) were compared in the two groups, as well as glucose tolerance (i.p. glucose test) and liver steatosis (ultrasounds). RESULTS: Body weight in HF-group exceeded C-group at the end of the experiment (+28% p < 0.01). An abnormal ventricular repolarization (long QTc on ECG) together with impaired LV filling rate and increased LV mass was found in HF-group as compared to C. Moreover, HF-group showed higher heart rate, unbalanced autonomic control with adrenergic prevalence and a greater susceptibility to develop rhythm disturbances under adrenergic challenge (i.p. isoprenaline). Impaired glucose tolerance and higher liver fat accumulation were also found in HF mice compared to C. CONCLUSIONS: The described murine model of 13 weeks on HF diet, well reproduced the cardiovascular and metabolic disorders reported in clinical obesity, suggesting its potential utility as translational mean suitable for testing new pharmaco-therapeutic approaches to the treatment of obesity and its comorbidity.


Subject(s)
Diet, High-Fat/adverse effects , Ventricular Dysfunction, Left/physiopathology , Adipose Tissue/diagnostic imaging , Animals , Arrhythmias, Cardiac , Disease Models, Animal , Electrocardiography , Glucose Intolerance , Heart Rate , Liver/diagnostic imaging , Mice , Mice, Inbred C57BL , Obesity/physiopathology
6.
Mol Cell Biochem ; 475(1-2): 205-214, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32780210

ABSTRACT

The deiodinases regulate the activation and inactivation of Thyroid hormones (TH), in both physiological and pathological conditions. The three deiodinases, DIO1, DIO2 and DIO3, have different catalytic role and cellular and tissue distribution. Aim of this study is to evaluate a rat model of regional ischemia/reperfusion (I/R), the modification of cardiac main function after the administration of 6 µg/kg/day of triiodothyronine (T3), and the associated to DIO1, DIO2 and DIO3 gene expression. We also aim to study DIO1 and DIO2 protein levels in different left ventricular regions after an ischemic event. Four groups of rats were studied: sham-operated, sham-operated + T3, I/R rats and I/R rats + T3. DIO1, DIO2 and DIO3 expression were evaluated in I/R region (AAR: area-at-risk) and in a more distant region from ischemic wound (RZ: remote zone). In I/R group, circulating free-T3 (FT3) levels were significantly decreased with respect to basal values, whereas in I/R + T3 rats, FT3 levels were comparable to basal values. In AAR of I/R + T3 rats, DIO1 and DIO2 gene expression significantly increased with respect to sham. In RZ, DIO1 and DIO3 gene expression was significantly lower in sham and I/R rats when compared to I/R + T3. In sham + T3 group, DIO1 and DIO2 gene expression was not detectable, whereas DIO3 was significantly higher than in the other three groups. The present study gives interesting new insights on DIO1, DIO2 and DIO3 in the ischemic heart and their role in relation to T3-mediated amelioration of cardiac function and structure.


Subject(s)
Heart/physiology , Iodide Peroxidase/metabolism , Reperfusion Injury/metabolism , Thyroid Hormones/metabolism , Triiodothyronine/administration & dosage , Animals , Disease Models, Animal , Heart/drug effects , Infusions, Intravenous , Iodide Peroxidase/genetics , Male , Rats , Rats, Wistar , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
7.
Pharmacol Res ; 159: 105047, 2020 09.
Article in English | MEDLINE | ID: mdl-32590101

ABSTRACT

Obesity is an independent risk factor to develop cardiac functional and structural impairments. Here, we investigated the effects of supplementation of inositols on the electrical, structural, and functional cardiac alterations in the mouse model of high fat diet (HFD) induced obesity. Three groups of C57BL6 mice (n = 16 each) were studied: j) HFD feeding; jj) HFD feeding + inositols from week 9 to 13; jjj) standard diet feeding. Study observation period was 13 weeks. Inositols were administered as mixture of myo-inositol and d-chiro-inositol in the drinking water. Effects of inositols were evaluated based on electrical, structural, and functional cardiac features, autonomic sympatho-vagal balance and arrhythmogenic susceptibility to adrenergic challenge. Heart samples were collected for histological evaluations and transcriptional analyses of genes involved in defining the shape and propagation of the action potential, fatty acid metabolism and oxidative stress. Inositol supplementation significantly restored control values of heart rate and QTc interval on ECG and of sympatho-vagal balance. Moreover, it blunted the increase in left ventricular mass and cardiomyocyte hypertrophy, reversed diastolic dysfunction, reduced the susceptibility to arrhythmic events and restored the expression level of cardiac genes altered by HFD. The present study shows, for the first time, how a short period of supplementation with inositols is able to ameliorate the HFD-induced electrical, structural and functional heart alterations including ventricular remodeling. Results provide a new insight into the cardioprotective effect of inositols, which could pave the way for a novel therapeutic approach to the treatment of HFD obesity-induced heart dysfunction.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Dietary Supplements , Heart Conduction System/drug effects , Hypertrophy, Left Ventricular/prevention & control , Inositol/administration & dosage , Myocytes, Cardiac/drug effects , Obesity/drug therapy , Ventricular Dysfunction, Left/prevention & control , Action Potentials/drug effects , Administration, Oral , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Diet, High-Fat , Disease Models, Animal , Female , Gene Expression Regulation , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Heart Rate/drug effects , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Obesity/complications , Time Factors , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
8.
Pharmacol Res ; 158: 104920, 2020 08.
Article in English | MEDLINE | ID: mdl-32461187

ABSTRACT

Anaplastic thyroid cancer (ATC) is a rare neoplasia with a poor prognosis. Proliferation and apoptosis assays were performed on ATC cell lines (8305C, 8505C) exposed to vinorelbine, lenvatinib, as well as to concomitant combinations. ABCB1, ABCG2 and CSF-1 mRNA expression was evaluated by real time PCR. The relative levels of pospho Akt were investigated as part of a human phospho-kinase array analysis, and CSF-1 and VEGFR-2 protein levels were measured by ELISA. The intracellular concentration of lenvatinib in ATC cells was measured by combined reversed-phase liquid chromatography-tandem mass spectrometry. An ATC subcutaneous xenograft tumor model in nude mice was treated with vinorelbine, lenvatinib, or vinorelbine plus lenvatinib. After treatment with vinorelbine, lenvatinib, a significant antiproliferative effect in ATC cell lines was observed. The concomitant treatment of vinorelbine and lenvatinib revealed synergism for all the fractions of affected cells. A decrease in ABCB1 expression was reported in both ATC cell lines treated with the lenvatinib plus vinorelbine combination, as was an increase in the intracellular concentration of lenvatinib. The combination caused a decrease in Akt, GSK3α/ß, PRAS40 and Src phosphorylation, and in both CSF-1 mRNA and protein levels. In the subcutaneous tumor model, the combination reduced the tumor volume during the treatment period. Our results establish the synergistic ATC antitumor activity of a vinorelbine and lenvatinib combination.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Phenylurea Compounds/administration & dosage , Quinolines/administration & dosage , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Vinorelbine/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Nude , Mice, Transgenic , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
9.
Int J Mol Sci ; 20(14)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295805

ABSTRACT

Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.


Subject(s)
Heart Diseases/etiology , Heart Diseases/metabolism , Mitochondria, Heart/metabolism , Thyroid Hormones/metabolism , Animals , Biological Transport , Calcium/metabolism , Disease Susceptibility , Energy Metabolism , Gene Expression Regulation , Heart Diseases/physiopathology , Homeostasis , Humans , Mitochondria, Heart/genetics , Mitophagy , Oxidative Stress , Signal Transduction , Thyroid Gland/metabolism
10.
Int J Mol Sci ; 20(6)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884846

ABSTRACT

Research on microcirculatory alterations in human heart disease is essential to understand the genesis of myocardial contractile dysfunction and its evolution towards heart failure. The use of contrast agents in magnetic resonance imaging is an important tool in medical diagnostics related to this dysfunction. Contrast agents significantly improve the imaging by enhancing the nuclear magnetic relaxation rates of water protons in the tissues where they are distributed. Gadolinium complexes are widely employed in clinical practice due to their high magnetic moment and relatively long electronic relaxation time. In this study, the behavior of gadolinium ion as a contrast agent was investigated by two complementary methods, relaxometry and secondary ion mass spectrometry. The study examined the distribution of blood flow within the microvascular network in ex vivo Langendorff isolated rat heart models, perfused with Omniscan® contrast agent. The combined use of secondary ion mass spectrometry and relaxometry allowed for both a qualitative mapping of agent distribution as well as the quantification of gadolinium ion concentration and persistence. This combination of a chemical mapping and temporal analysis of the molar concentration of gadolinium ion in heart tissue allows for new insights on the biomolecular mechanisms underlying the microcirculatory alterations in heart disease.


Subject(s)
Gadolinium/administration & dosage , Heart Failure/diagnostic imaging , Heart/diagnostic imaging , Magnetic Resonance Imaging , Animals , Contrast Media/administration & dosage , Heart/drug effects , Heart Failure/pathology , Humans , Microcirculation/drug effects , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Rats , Spectrometry, Mass, Secondary Ion , Water/chemistry
11.
Mol Cell Biochem ; 449(1-2): 277-283, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29737449

ABSTRACT

Triiodothyronine (T3) and renin-angiotensin system (RAS) are functionally related in cardiovascular system. Recently, in an in vivo myocardial ischemia/reperfusion (I/R) model in rats, we showed that T3 treatment improved the post-ischemic recovery of cardiac function. In the present study, we used the same experimental model of regional I/R, obtained by 30 min occlusion of the left descending coronary artery, followed by 3-days of reperfusion, to investigate the effect of 48-h treatment (started 1 day after ischemia) with 6 µg/kg/day T3 or vehicle. T3 was delivered by constant subcutaneous infusion via miniosmotic pump. In particular, aim of this work is to evaluate the effects of T3 on the gene expression of the main receptors and enzymes involved in the two cardiac arms of RAS in an in vivo rat model of I/R: AT1R-ACE (detrimental arm) and AT2R/MAS1-ACE2 (protective arm). Gene expression was evaluated by Real-Time PCR in infarct zone (Area-At-Risk: AAR) and in tissues distant from ischemic wound (Remote Zone: RZ). Three different rat groups were used: sham-operated; I/R and I/R + T3. Main result of the study is the opposite response of AT1R and AT2R/MAS1 expression to I/R procedure and to T3 administration after I/R in both AAR and RZ. Moreover, T3 significantly increased ACE and ACE2 enzyme expression in AAR and RZ. This study reveals that T3 stimulates the expression of protective genes related to RAS such as AT2R/MAS1-ACE2 mainly in BZ, suggesting that, at least in part, T3 could be involved in the local cardiac ameliorative response to I/R procedure.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation/drug effects , Muscle Proteins/biosynthesis , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Renin-Angiotensin System/drug effects , Triiodothyronine/pharmacology , Animals , Male , Myocardial Reperfusion Injury/pathology , Proto-Oncogene Mas , Rats , Rats, Wistar
12.
Heart Vessels ; 32(4): 474-483, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27812747

ABSTRACT

Mouse models are increasingly employed in the comprehension of cardiovascular disease. Wave Intensity Analysis (WIA) can provide information about the interaction between the vascular and the cardiac system. We investigate age-associated changes in WIA-derived parameters in mice and correlate them with biomarkers of cardiac function. Sixteen wild-type male mice were imaged with high-resolution ultrasound (US) at 8 weeks (T 0) and 25 weeks (T 1) of age. Carotid pulse wave velocity (PWV) was calculated from US images using the diameter-velocity loop and employed to evaluate WIA. Amplitudes of the first (W 1) and the second (W 2) local maxima, local minimum (W b) and the reflection index (RI = W b/W 1) were assessed. Cardiac output (CO), ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) were evaluated; longitudinal, radial and circumferential strain and strain rate values (LS, LSR, RS, RSR, CS, CSR) were obtained through strain analysis. W 1 (T 0: 4.42e-07 ± 2.32e-07 m2/s; T 1: 2.21e-07 ± 9.77 m2/s), W 2 (T 0: 2.45e-08 ± 9.63e-09 m2/s; T 1: 1.78e-08 ± 7.82 m2/s), W b (T 0: -8.75e-08 ± 5.45e-08 m2/s; T 1: -4.28e-08 ± 2.22e-08 m2/s), CO (T 0: 19.27 ± 4.33 ml/min; T 1: 16.71 ± 2.88 ml/min), LS (T 0: 17.55 ± 3.67%; T 1: 15.05 ± 2.89%), LSR (T 0: 6.02 ± 1.39 s-1; T 1: 5.02 ± 1.25 s-1), CS (T 0: 27.5 ± 5.18%; T 1: 22.66 ± 3.09%) and CSR (T 0: 10.03 ± 2.55 s-1; T 1: 7.50 ± 1.84 s-1) significantly reduced with age. W 1 was significantly correlated with CO (R = 0.58), EF (R = 0.72), LS (R = 0.65), LSR (R = 0.89), CS (R = 0.61), CSR (R = 0.70) at T 0; correlations were lost at T 1. The decrease in W 1 and W 2 suggests a cardiac performance reduction, while that in Wb, considering unchanged RI, might indicate a wave energy decrease. The loss of correlation between WIA-derived and cardiac parameters might reflect an alteration in cardiovascular interaction.


Subject(s)
Age Factors , Carotid Arteries/diagnostic imaging , Heart/diagnostic imaging , Pulse Wave Analysis/methods , Animals , Blood Flow Velocity , Male , Mice , Mice, Inbred C57BL , Stroke Volume , Ultrasonography, Doppler
13.
Mol Med ; 21(1): 900-911, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26623926

ABSTRACT

Activation of transforming growth factor (TGF)-ß1 signaling in the ischemia/reperfusion (I/R) injured myocardium leads to dysregulation of miR-29-30-133, favoring the profibrotic process that leads to adverse cardiac remodeling (CR). We have previously shown that timely correction of the postischemic low-T3 syndrome (Low-T3S) exerts antifibrotic effects, but the underlying molecular players are still unknown. Here we hypothesize that a prompt, short-term infusion of T3 in a rat model of post I/R Low-T3S could hamper the early activation of the TGFß1-dependent profibrotic cascade to confer long-lasting cardioprotection against adverse CR. Twenty-four hours after I/R, rats that developed the Low-T3S were randomly assigned to receive a 48-h infusion of 6 µg/kg/d T3 (I/R-L+T3) or saline (I/R-L) and sacrificed at 3 or 14 d post-I/R. Three days post-I/R, Low-T3S correction favored functional cardiac recovery. This effect was paralleled by a drop in TGFß1 and increased miR-133a, miR-30c and miR-29c in the infarcted myocardium. Consistently, connective transforming growth factor (CTGF) and matrix metalloproteinase-2(MMP-2), validated targets of the above miRNAs, were significantly reduced. Fourteen days post-I/R, the I/R-L+T3 rats presented a significant reduction of scar size with a better preservation of cardiac performance and LV chamber geometry. At this time, TGFß1 and miR-29c levels were in the normal range in both groups, whereas miR-30c-133a, MMP-2 and CTGF remained significantly altered in the I/R group. In conclusion, the antifibrotic effect exerted by T3 in the early phase of postischemic wound healing triggers a persistent cardioprotective response that hampers the progression of heart dysfunction and adverse CR.

14.
Heart Fail Rev ; 21(4): 391-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27011011

ABSTRACT

The evolution of cardiac disease after an acute ischemic event depends on a complex and dynamic network of mechanisms alternating from ischemic damage due to acute coronary occlusion to reperfusion injury due to the adverse effects of coronary revascularization till post-ischemic remodeling. Cardioprotection is a new purpose of the therapeutic interventions in cardiology with the goal to reduce infarct size and thus prevent the progression toward heart failure after an acute ischemic event. In a complex biological system such as the human one, an effective cardioprotective strategy should diachronically target the network of cross-talking pathways underlying the disease progression. Thyroid system is strictly interconnected with heart homeostasis, and recent studies highlighted its role in cardioprotection, in particular through the preservation of mitochondrial function and morphology, the antifibrotic and proangiogenetic effect and also to the potential induction of cell regeneration and growth. The objective of this review was to highlight the cardioprotective role of triiodothyronine in the complexity of post-ischemic disease evolution.


Subject(s)
Cardiotonic Agents/pharmacology , Heart/physiopathology , Myocardial Ischemia/prevention & control , Myocardial Ischemia/physiopathology , Thyroid Hormones/pharmacology , Animals , Disease Models, Animal , Heart/drug effects , Hormone Replacement Therapy , Humans , Mitochondria, Heart/drug effects , Rats , Regeneration/drug effects , Thyroid Hormones/physiology
15.
Mol Cell Biochem ; 399(1-2): 87-94, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25304215

ABSTRACT

Endothelial system acts as a large endocrine organ in the human body; however, little is still known about the regulative role of THs on endothelial cells. Aim of the present study was to investigate the expression of the TH deiodinases (D1, D2, and D3) and TH receptors (TRα1, TRα2, and TRß1) in an endothelial microvascular cultured cell model (HMEC-1), after stimulation with triiodothyronine (T3, 10-100 nM), thyroxine (T4, 10-100 nM), and reverse T3 (rT3, 1-10 nM). DIO1 was significantly inhibited by T4 at 10 and 100 nM (p < 0.001). rT3 significantly inhibited DIO1 at 1 nM concentration (p < 0.01) and stimulated DIO1 at 10 nM dosage (p < 0.001). T4 and rT3 significantly inhibited DIO2 at all concentrations. DIO3 was induced at 100 nM T3 (p < 0.05) and 100 nM rT3 (p < 0.01), and TRα1 and TRα2 mRNAs were significantly increased after 100 nM T3 treatment (p < 0.05) and decreased after 1 and 10 nM rT3 (p < 0.05). TRß1 was significantly increased by all THs at different concentrations: 10 nM T3 and 100 nM T3 (p < 0.05), 1 nM rT3 (p < 0.001), and 100 nM T4 (p < 0.01). D1 and D2 protein levels were evaluated, but no significant difference was observed for any hormonal treatment. For the first time, we found that the TH deiodinases and receptors are expressed in endothelial HMEC-1 cells. These findings might be of significant clinical relevance, given the important regulatory role of the endothelium as first barrier to the bloodstream.


Subject(s)
Endothelial Cells/enzymology , Endothelium, Vascular/cytology , Iodide Peroxidase/metabolism , Cell Line , Dermis/blood supply , Gene Expression , Humans , Iodide Peroxidase/genetics , Microvessels/cytology , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Thyroxine/physiology , Triiodothyronine/physiology
16.
Int J Mol Sci ; 16(11): 26687-705, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26561807

ABSTRACT

Mitochondria are major determinants of cell fate in ischemia/reperfusion injury (IR) and common effectors of cardio-protective strategies in cardiac ischemic disease. Thyroid hormone homeostasis critically affects mitochondrial function and energy production. Since a low T3 state (LT3S) is frequently observed in the post infarction setting, the study was aimed to investigate the relationship between 72 h post IR T3 levels and both the cardiac function and the mitochondrial proteome in a rat model of IR. The low T3 group exhibits the most compromised cardiac performance along with the worst mitochondrial activity. Accordingly, our results show a different remodeling of the mitochondrial proteome in the presence or absence of a LT3S, with alterations in groups of proteins that play a key role in energy metabolism, quality control and regulation of cell death pathways. Overall, our findings highlight a relationship between LT3S in the early post IR and poor cardiac and mitochondrial outcomes, and suggest a potential implication of thyroid hormone in the cardio-protection and tissue remodeling in ischemic disease.


Subject(s)
Mitochondria, Heart/genetics , Mitochondrial Proteins/genetics , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/genetics , Proteome/genetics , Triiodothyronine/genetics , Animals , Cell Death/genetics , Energy Metabolism/genetics , Gene Expression Profiling , Gene Expression Regulation , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Proteins/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteome/metabolism , Proteomics/methods , Rats , Rats, Wistar , Signal Transduction , Triiodothyronine/deficiency
17.
J Transl Med ; 12: 89, 2014 Apr 05.
Article in English | MEDLINE | ID: mdl-24708733

ABSTRACT

BACKGROUND: Up-regulation of HO-1 by genetic manipulation or pharmacological pre-treatment has been reported to provide benefits in several animal models of myocardial infarction (MI). However, its efficacy following MI initiation (as in clinical reality) remains to be tested. Therefore, this study investigated whether HO-1 over-expression, by cobalt protoporphyrin (CoPP) administered after LAD ligation, is still able to improve functional and structural changes in left ventricle (LV) in a rat model of 4-week MI. METHODS: A total of 144 adult male Wistar rats were subjected to either left anterior coronary artery ligation or sham-operation. The effect of CoPP treatment (5 mg/kg i.p. at the end of the surgical session and, then, once a week for 4 weeks) was evaluated on the basis of survival, electro- and echocardiography, plasma levels of B-type natriuretic peptide (BNP), endothelin-1 and prostaglandin E2, coronary microvascular reactivity, MI size, LV wall thickness and vascularity. Besides, the expression of HO-1 and connexin-43 in different LV territories was assessed by western blot analysis and immunohistochemistry, respectively. RESULTS: CoPP induced an increased expression of HO-1 protein with >16 h delay. CoPP treatment significantly reduced mortality, MI size, BNP concentration, ECG alterations, LV dysfunction, microvascular constriction, capillary rarefaction and restored connexin-43 expression as compared to untreated MI. These functional and structural changes were paralleled by increased HO-1 expression in all LV territories. HO activity inhibition by tin-mesoporphyrin abolished the differences between CoPP-treated and untreated MI animals. CONCLUSIONS: This is the first report demonstrating the putative role of pharmacological induction of HO-1 following coronary occlusion to benefit infarcted and remote territories, leading to better cardiac function in a 4-week MI outcome.


Subject(s)
Heme Oxygenase-1/metabolism , Myocardial Infarction/metabolism , Up-Regulation , Ventricular Remodeling , Animals , Male , Myocardial Infarction/enzymology , Myocardial Infarction/mortality , Rats , Rats, Wistar
18.
Front Nutr ; 11: 1289750, 2024.
Article in English | MEDLINE | ID: mdl-38344021

ABSTRACT

Background: Dietary fat consumption, involved in the pathogenesis of insulin resistance and impaired glucose metabolism, is linked with decline in cognitive functions, dementia, and development of Parkinson's disease and Alzheimer's disease. Mature IL-1ß, requiring the activation of the P2X7 receptor (P2X7R)-inflammasome complex, is an important mediator of neuroinflammation. The aim of the study was to test whether P2X7R activation might interfere with systemic and cerebral metabolic homeostasis. Methods: We treated WT and P2X7R KO mice with a high-fat diet (HFD) for 16 weeks, evaluating the effects on the Substantia Nigra and Hippocampus, target areas of damage in several forms of cognitive impairment. Results: HFD-treated WT and P2X7R KO mice showed a different brain mRNA profile of Insulin and Igf-1, with these genes and relative receptors, more expressed in KO mice. Unlike P2X7R KO mice, WT mice treated with HFD displayed a diameter reduction in dopaminergic neurons in the Substantia Nigra, accompanied by an increased IBA1 expression in this area; they also showed poor performances during Y-Maze and Morris Water Maze, tasks involving Hippocampus activity. Conversely, Parkin, whose reduction might promote neuronal cell death, was increased in the brain of P2X7R KO animals. Conclusion: We report for the first time that HFD induces damage in dopaminergic neurons of the Substantia Nigra and a Hippocampus-related worse cognitive performance, both attenuated in the absence of P2X7R. The involved mechanisms might differ in the two brain areas, with a predominant role of inflammation in the Substantia Nigra and a metabolic derangement in the Hippocampus.

19.
Acta Biomater ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871201

ABSTRACT

To study in vivo the bioactivity of biodegradable magnesium implants and other possible biomaterials, we are proposing a previously unexplored application of PET-CT imaging, using available tracers to follow soft tissue and bone remodelling and immune response in the presence of orthopaedic implants. Female Wistar rats received either implants (Ti6Al7Nb titanium or WE43 magnesium) or corresponding transcortical sham defects into the diaphyseal area of the femurs. Inflammatory response was followed with [18F]FDG and osteogenesis with [18F]NaF, over the period of 1.5 months after surgery. An additional pilot study with [68Ga]NODAGA-RGD tracer specific to αvß3 integrin expression was performed to follow the angiogenesis for one month. [18F]FDG tracer uptake peaked on day 3 before declining in all groups, with Mg and Ti groups exhibiting overall higher uptake compared to sham. This suggests increased cellular activity and tissue response in the presence of Mg during the initial weeks, with Ti showing a subsequent increase in tracer uptake on day 45, indicating a foreign body reaction. [18F]NaF uptake demonstrated the superior osteogenic potential of Mg compared to Ti, with peak uptake on day 7 for all groups. [68Ga]NODAGA-RGD pilot study revealed differences in tracer uptake trends between groups, particularly the prolonged expression of αvß3 integrin in the presence of implants. Based on the observed differences in the uptake trends of radiotracers depending on implant material, we suggest that PET-CT is a suitable modality for long-term in vivo assessment of orthopaedic biomaterial biocompatibility and underlying tissue reactions. STATEMENT OF SIGNIFICANCE: The study explores the novel use of positron emission tomography for the assessment of the influence that biomaterials have on the surrounding tissues. Previous related studies have mostly focused on material-related effects such as implant-associated infections or to follow the osseointegration in prosthetics, but the use of PET to evaluate the materials has not been reported before. The approach tests the feasibility of using repeated PET-CT imaging to follow the tissue response over time, potentially improving the methodology for adopting new biomaterials for clinical use.

20.
Int J Cardiol ; 409: 132203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795973

ABSTRACT

BACKGROUND: Sacubitril/valsartan has been demonstrated to promote left ventricular (LV) reverse remodelling and improve outcomes in patients with heart failure (HF) with reduced ejection fraction (EF). Its molecular and tissue effects have not been fully elucidated yet, due to the paucity of preclinical studies, mostly based on ischaemic models. We aimed to evaluate the effects of sacubitril/valsartan on LV remodelling, myocardial fibrosis and mitochondrial biology in a murine model of non-ischaemic LV dysfunction. METHODS: Adult transgenic male mice with cardiac-specific hyperaldosteronism (AS mice) received subcutaneous isoproterenol injections to induce LV systolic dysfunction. After 7 days, mice were randomized to a 2-week treatment with saline (ISO-AS n = 15), valsartan (ISO + V n = 12) or sacubitril/valsartan (ISO + S/V n = 12). Echocardiography was performed at baseline, at day 7, and after each of the 2 weeks of treatment. After sacrifice at day 21, histological and immunochemical assays were performed. A control group of AS mice was also obtained (Ctrl-AS n = 8). RESULTS: Treatment with sacubitril/valsartan, but not with valsartan, induced a significant improvement in LVEF (p = 0.009 vs ISO-AS) and fractional shortening (p = 0.032 vs ISO-AS) after 2- week treatment. In both ISO + V and ISO + S/V groups, a trend toward reduction of the cardiac collagen 1/3 expression ratio was detected. ISO + V and ISO + S/V groups showed a significant recovery of mitochondrial morphology and inner membrane function meant for oxidative phosphorylation. CONCLUSION: In a murine model of non-ischaemic HF, sacubitril/valsartan proved to have beneficial effects on LV systolic function, and on cardiac energetics, by improving mitochondrial activity.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Disease Models, Animal , Drug Combinations , Fibrosis , Isoproterenol , Tetrazoles , Valsartan , Ventricular Dysfunction, Left , Ventricular Remodeling , Animals , Aminobutyrates/pharmacology , Biphenyl Compounds/pharmacology , Mice , Male , Ventricular Remodeling/drug effects , Tetrazoles/pharmacology , Fibrosis/chemically induced , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/physiopathology , Isoproterenol/toxicity , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Angiotensin Receptor Antagonists/pharmacology , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL