Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 121(43): e2414213121, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39401352

ABSTRACT

The poor prognosis of relatively undifferentiated cancers has long been recognized, suggesting that selection against differentiation and in favor of uncontrolled growth is one of the most powerful drivers of cancer progression. Goblet cells provide the mucous surface of the gut, and when present in colorectal cancers (CRC), the cancers are called mucinous. We have used the presence of MUC2, the main mucous product of goblet cells, and an associated gene product, TFF3, to classify a large panel of nearly 80 CRC-derived cell lines into five categories based on their levels of MUC2 and TFF3 expression. We have then shown that these five patterns of expression can be easily identified in the direct analysis of tumor specimens allowing a much finer characterization of CRCs with respect to the presence of goblet cell differentiation. In particular, about 30% of all CRCs fall into the category of expressing TFF3 but not MUC2, which has not previously been acknowledged. Using the cell line data, we suggest that there are up to 12 genes (MUC2, TFF3, ATOH1, SPDEF, CDX1, CDX2, GATA6, HES1, ETS2, OLFM4, TOX3, and LGR5) that may be involved in selection against goblet cell differentiation in CRC by changes in methylation rather than mutations. Of these, LGR5, which is particularly associated with lack of goblet cell features, may function in the control of differentiation rather than direct control of cell growth, as has so far mostly been assumed. These results emphasize the importance of methylation changes in driving cancer progression.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Goblet Cells , Mucin-2 , Trefoil Factor-3 , Goblet Cells/metabolism , Goblet Cells/pathology , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Trefoil Factor-3/metabolism , Trefoil Factor-3/genetics , Mucin-2/metabolism , Mucin-2/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Cell ; 145(1): 79-91, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21439629

ABSTRACT

Intramembrane proteolysis governs many cellular control processes, but little is known about how intramembrane proteases are regulated. iRhoms are a conserved subfamily of proteins related to rhomboid intramembrane serine proteases that lack key catalytic residues. We have used a combination of genetics and cell biology to determine that these "pseudoproteases" inhibit rhomboid-dependent signaling by the epidermal growth factor receptor pathway in Drosophila, thereby regulating sleep. iRhoms prevent the cleavage of potential rhomboid substrates by promoting their destabilization by endoplasmic reticulum (ER)-associated degradation; this mechanism has been conserved in mammalian cells. The exploitation of the intrinsic quality control machinery of the ER represents a new mode of regulation of intercellular signaling. Inactive cognates of enzymes are common, but their functions are mostly unclear; our data indicate that pseudoenzymes can readily evolve into regulatory proteins, suggesting that this may be a significant evolutionary mechanism.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Endoplasmic Reticulum/metabolism , Peptide Hydrolases/metabolism , Proteins/metabolism , Signal Transduction , Animals , Drosophila/cytology , Drosophila Proteins/chemistry , ErbB Receptors/metabolism , Evolution, Molecular , Membrane Proteins/chemistry , Peptide Hydrolases/genetics , Serine Endopeptidases
3.
J Biol Chem ; 298(6): 101935, 2022 06.
Article in English | MEDLINE | ID: mdl-35436469

ABSTRACT

In metazoans, the architecture of the endoplasmic reticulum (ER) differs between cell types and undergoes major changes throughout the cell cycle and according to physiological needs. Although much is known about how the different ER morphologies are generated and maintained, especially ER tubules, how context-dependent changes in ER shape and distribution are regulated and the factors involved are less well characterized, as are the factors that contribute to the positioning of the ER within the cell. By overexpression and KO experiments, we show that the levels of RHBDL4, an ER-resident rhomboid protease, modulate the shape and distribution of the ER, especially during conditions that require rapid changes in the ER sheet distribution, such as ER stress. We demonstrate that RHBDL4 interacts with cytoskeleton-linking membrane protein 63 (CLIMP-63), a protein involved in ER sheet stabilization, as well as with the cytoskeleton. Furthermore, we found that mice lacking RHBDL4 are sensitive to ER stress and develop liver steatosis, a phenotype associated with unresolved ER stress. Taken together, these data suggest a new physiological role for RHBDL4 and also imply that this function does not require its enzymatic activity.


Subject(s)
Endoplasmic Reticulum Stress , Animals , Cytoskeleton/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice
4.
Semin Cell Dev Biol ; 60: 10-18, 2016 12.
Article in English | MEDLINE | ID: mdl-27497690

ABSTRACT

Rhomboids are conserved intramembrane serine proteases with widespread functions. They were the earliest discovered members of the wider rhomboid-like superfamily of proteases and pseudoproteases. The secretase class of rhomboid proteases, distributed through the secretory pathway, are the most numerous in eukaryotes, but our knowledge of them is limited. Here we aim to summarise all that has been published on secretase rhomboids in a concise encyclopaedia of the enzymes, their substrates, and their biological roles. We also discuss emerging themes of how these important enzymes are regulated.


Subject(s)
Membrane Proteins/metabolism , Peptide Hydrolases/metabolism , Animals , Humans , Membrane Proteins/chemistry , Models, Biological , Peptide Hydrolases/chemistry , Substrate Specificity
5.
Proc Natl Acad Sci U S A ; 106(40): 17019-24, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19805154

ABSTRACT

Plasma cells daily secrete their own mass in antibodies, which fold and assemble in the endoplasmic reticulum (ER). To reach these levels, cells require pERp1, a novel lymphocyte-specific small ER-resident protein, which attains expression levels as high as BiP when B cells differentiate into plasma cells. Although pERp1 has no homology with known ER proteins, it does contain a CXXC motif typical for oxidoreductases. In steady state, the CXXC cysteines are locked by two parallel disulfide bonds with a downstream C(X)(6)C motif, and pERp1 displays only modest oxidoreductase activity. pERp1 emerged as a dedicated folding factor for IgM, associating with both heavy and light chains and promoting assembly and secretion of mature IgM.


Subject(s)
Endoplasmic Reticulum/metabolism , Immunoglobulin M/metabolism , Molecular Chaperones/metabolism , Plasma Cells/metabolism , Amino Acid Sequence , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/ultrastructure , Cell Differentiation , Cell Line, Tumor , Electrophoresis, Gel, Two-Dimensional , Endoplasmic Reticulum Chaperone BiP , HeLa Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Immunoblotting , Mass Spectrometry , Mice , Microscopy, Fluorescence , Microscopy, Immunoelectron , Molecular Chaperones/genetics , Oxidoreductases/metabolism , Plasma Cells/cytology , RNA Interference , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL