Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37166351

ABSTRACT

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Subject(s)
Chromatin , Neurodevelopmental Disorders , Humans , Chromatin/genetics , DNA Methylation/genetics , Mutation , Neurodevelopmental Disorders/genetics , Genetic Association Studies , Codon
2.
Am J Hum Genet ; 106(5): 623-631, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32275884

ABSTRACT

Nucleoporins (NUPs) are an essential component of the nuclear-pore complex, which regulates nucleocytoplasmic transport of macromolecules. Pathogenic variants in NUP genes have been linked to several inherited human diseases, including a number with progressive neurological degeneration. We present six affected individuals with bi-allelic truncating variants in NUP188 and strikingly similar phenotypes and clinical courses, representing a recognizable genetic syndrome; the individuals are from four unrelated families. Key clinical features include congenital cataracts, hypotonia, prenatal-onset ventriculomegaly, white-matter abnormalities, hypoplastic corpus callosum, congenital heart defects, and central hypoventilation. Characteristic dysmorphic features include small palpebral fissures, a wide nasal bridge and nose, micrognathia, and digital anomalies. All affected individuals died as a result of respiratory failure, and five of them died within the first year of life. Nuclear import of proteins was decreased in affected individuals' fibroblasts, supporting a possible disease mechanism. CRISPR-mediated knockout of NUP188 in Drosophila revealed motor deficits and seizure susceptibility, partially recapitulating the neurological phenotype seen in affected individuals. Removal of NUP188 also resulted in aberrant dendrite tiling, suggesting a potential role of NUP188 in dendritic development. Two of the NUP188 pathogenic variants are enriched in the Ashkenazi Jewish population in gnomAD, a finding we confirmed with a separate targeted population screen of an international sampling of 3,225 healthy Ashkenazi Jewish individuals. Taken together, our results implicate bi-allelic loss-of-function NUP188 variants in a recessive syndrome characterized by a distinct neurologic, ophthalmologic, and facial phenotype.


Subject(s)
Alleles , Brain/abnormalities , Drosophila Proteins/genetics , Eye Abnormalities/genetics , Heart Defects, Congenital/genetics , Loss of Function Mutation/genetics , Nuclear Pore Complex Proteins/genetics , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Child, Preschool , Dendrites/metabolism , Dendrites/pathology , Drosophila melanogaster , Eye Abnormalities/mortality , Female , Fibroblasts , Genes, Recessive , Heart Defects, Congenital/mortality , Humans , Infant , Infant, Newborn , Jews/genetics , Male , Nuclear Pore Complex Proteins/deficiency , Seizures/metabolism , Syndrome , beta Karyopherins/metabolism
3.
Am J Med Genet A ; 182(12): 2909-2918, 2020 12.
Article in English | MEDLINE | ID: mdl-32954639

ABSTRACT

Limb reduction defects (LRDs) that affect multiple limbs are considered to be more often heritable, but only few studies have substantiated this. We aimed to investigate if an etiological diagnosis (genetic disorder or clinically recognizable disorder) is more likely to be made when multiple limbs are affected compared to when only one limb is affected. We used data from EUROCAT Northern Netherlands and included 391 fetuses and children with LRDs born in 1981-2017. Cases were classified as having a transverse, longitudinal (preaxial/postaxial/central/mixed), intercalary, or complex LRD of one or more limbs and as having an isolated LRD or multiple congenital anomalies (MCA). We calculated the probability of obtaining an etiological diagnosis in cases with multiple affected limbs versus one affected limb using relative risk (RR) scores and Fisher's exact test. We showed that an etiological diagnosis was made three times more often when an LRD occurred in multiple limbs compared to when it occurred in one limb (RR 2.9, 95% CI 2.2-3.8, p < 0.001). No genetic disorders were found in isolated cases with only one affected limb, whereas a genetic disorder was identified in 16% of MCA cases with one affected limb. A clinically recognizable disorder was found in 47% of MCA cases with one affected limb. Genetic counseling rates were similar. We conclude that reduction defects of multiple limbs are indeed more often heritable. Genetic testing seems less useful in isolated cases with one affected limb, but is warranted in MCA cases with one affected limb.


Subject(s)
Abnormalities, Multiple/pathology , Limb Deformities, Congenital/diagnosis , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/etiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Limb Deformities, Congenital/epidemiology , Limb Deformities, Congenital/etiology , Male , Mass Screening , Netherlands/epidemiology , Prognosis , Registries , Retrospective Studies , Risk
4.
Am J Med Genet A ; 182(9): 2037-2048, 2020 09.
Article in English | MEDLINE | ID: mdl-32710489

ABSTRACT

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.


Subject(s)
Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Tubulin/genetics , Child , Child, Preschool , Codon/genetics , Epigenesis, Genetic/genetics , Female , Genetic Association Studies , Humans , Infant , Intellectual Disability/pathology , Loss of Function Mutation/genetics , Male , Mutation, Missense , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Neurodevelopmental Disorders/physiopathology
5.
Transl Psychiatry ; 12(1): 421, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36182950

ABSTRACT

CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Megalencephaly , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , DNA-Binding Proteins/genetics , Female , Genetic Association Studies , Humans , Intellectual Disability/genetics , Male , Megalencephaly/genetics , Phenotype , Transcription Factors/genetics
6.
Eur J Hum Genet ; 29(11): 1669-1676, 2021 11.
Article in English | MEDLINE | ID: mdl-34456334

ABSTRACT

Deletions that include the gene TAB2 and TAB2 loss-of-function variants have previously been associated with congenital heart defects and cardiomyopathy. However, other features, including short stature, facial dysmorphisms, connective tissue abnormalities and a variable degree of developmental delay, have only been mentioned occasionally in literature and thus far not linked to TAB2. In a large-scale, social media-based chromosome 6 study, we observed a shared phenotype in patients with a 6q25.1 deletion that includes TAB2. To confirm if this phenotype is caused by haploinsufficiency of TAB2 and to delineate a TAB2-related phenotype, we subsequently sequenced TAB2 in patients with matching phenotypes and recruited patients with pathogenic TAB2 variants detected by exome sequencing. This identified 11 patients with a deletion containing TAB2 (size 1.68-14.31 Mb) and 14 patients from six families with novel truncating TAB2 variants. Twenty (80%) patients had cardiac disease, often mitral valve defects and/or cardiomyopathy, 18 (72%) had short stature and 18 (72%) had hypermobility. Twenty patients (80%) had facial features suggestive for Noonan syndrome. No substantial phenotypic differences were noted between patients with deletions and those with intragenic variants. We then compared our patients to 45 patients from the literature. All literature patients had cardiac diseases, but syndromic features were reported infrequently. Our study shows that the phenotype in 6q25.1 deletions is caused by haploinsufficiency of TAB2 and that TAB2 is associated not just with cardiac disease, but also with a distinct phenotype, with features overlapping with Noonan syndrome. We propose the name "TAB2-related syndrome".


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cardiomyopathies/genetics , Dwarfism/genetics , Heart Valve Diseases/genetics , Joint Instability/genetics , Phenotype , Cardiomyopathies/pathology , Chromosomes, Human, Pair 6/genetics , Dwarfism/pathology , Gene Deletion , Heart Valve Diseases/pathology , Humans , Joint Instability/pathology , Mitral Valve/pathology , Syndrome
7.
Nat Commun ; 11(1): 5797, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199684

ABSTRACT

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Subject(s)
Argonaute Proteins/genetics , Germ Cells/metabolism , Mutation/genetics , Nervous System/growth & development , Nervous System/metabolism , RNA Interference , Adolescent , Animals , Argonaute Proteins/chemistry , Child , Child, Preschool , Cluster Analysis , Dendrites/metabolism , Fibroblasts/metabolism , Gene Silencing , HEK293 Cells , Hippocampus/pathology , Humans , Mice , Molecular Dynamics Simulation , Neurons/metabolism , Phosphorylation , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/metabolism , Rats , Transcriptome/genetics
8.
Pediatrics ; 140(4)2017 Oct.
Article in English | MEDLINE | ID: mdl-28939701

ABSTRACT

BACKGROUND: Rapid diagnostic whole-genome sequencing has been explored in critically ill newborns, hoping to improve their clinical care and replace time-consuming and/or invasive diagnostic testing. A previous retrospective study in a research setting showed promising results with diagnoses in 57%, but patients were highly selected for known and likely Mendelian disorders. The aim of our prospective study was to assess the speed and yield of rapid targeted genomic diagnostics for clinical application. METHODS: We included 23 critically ill children younger than 12 months in ICUs over a period of 2 years. A quick diagnosis could not be made after routine clinical evaluation and diagnostics. Targeted analysis of 3426 known disease genes was performed by using whole-genome sequencing data. We measured diagnostic yield, turnaround times, and clinical consequences. RESULTS: A genetic diagnosis was obtained in 7 patients (30%), with a median turnaround time of 12 days (ranging from 5 to 23 days). We identified compound heterozygous mutations in the EPG5 gene (Vici syndrome), the RMND1 gene (combined oxidative phosphorylation deficiency-11), and the EIF2B5 gene (vanishing white matter), and homozygous mutations in the KLHL41 gene (nemaline myopathy), the GFER gene (progressive mitochondrial myopathy), and the GLB1 gene (GM1-gangliosidosis). In addition, a 1p36.33p36.32 microdeletion was detected in a child with cardiomyopathy. CONCLUSIONS: Rapid targeted genomics combined with copy number variant detection adds important value in the neonatal and pediatric intensive care setting. It led to a fast diagnosis in 30% of critically ill children for whom the routine clinical workup was unsuccessful.


Subject(s)
Delayed Diagnosis/prevention & control , Genetic Diseases, Inborn/diagnosis , Genomics/methods , Intensive Care, Neonatal/methods , Sequence Analysis, DNA/methods , Critical Illness , Female , Follow-Up Studies , Genetic Diseases, Inborn/genetics , Genetic Markers , Humans , Infant, Newborn , Male , Mutation , Pilot Projects , Prospective Studies , Time Factors
9.
Nat Neurosci ; 19(9): 1194-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27479843

ABSTRACT

To identify candidate genes for intellectual disability, we performed a meta-analysis on 2,637 de novo mutations, identified from the exomes of 2,104 patient-parent trios. Statistical analyses identified 10 new candidate ID genes: DLG4, PPM1D, RAC1, SMAD6, SON, SOX5, SYNCRIP, TCF20, TLK2 and TRIP12. In addition, we show that these genes are intolerant to nonsynonymous variation and that mutations in these genes are associated with specific clinical ID phenotypes.


Subject(s)
Intellectual Disability/genetics , Mutation/genetics , Carrier Proteins/genetics , DNA-Binding Proteins/genetics , Disks Large Homolog 4 Protein , Exome/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Minor Histocompatibility Antigens/genetics , Phenotype , Protein Kinases/genetics , Protein Phosphatase 2C/genetics , SOXD Transcription Factors/genetics , Smad6 Protein/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , rac1 GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL