Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nat Immunol ; 21(8): 914-926, 2020 08.
Article in English | MEDLINE | ID: mdl-32424363

ABSTRACT

Adoptive cell therapies using genetically engineered T cell receptor or chimeric antigen receptor T cells are emerging forms of immunotherapy that redirect T cells to specifically target cancer. However, tumor antigen heterogeneity remains a key challenge limiting their efficacy against solid cancers. Here, we engineered T cells to secrete the dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L-secreting T cells expanded intratumoral conventional type 1 DCs and substantially increased host DC and T cell activation when combined with immune agonists poly (I:C) and anti-4-1BB. Importantly, combination therapy led to enhanced inhibition of tumor growth and the induction of epitope spreading towards antigens beyond those recognized by adoptively transferred T cells in solid tumor models of T cell receptor and chimeric antigen receptor T cell therapy. Our data suggest that augmenting endogenous DCs is a promising strategy to overcome the clinical problem of antigen-negative tumor escape following adoptive cell therapy.


Subject(s)
Dendritic Cells/immunology , Immunotherapy, Adoptive , Membrane Proteins/immunology , Neoplasms, Experimental/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Humans , Immunologic Factors , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology
2.
Immunity ; 56(7): 1664-1680.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37392736

ABSTRACT

Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , Mice , Animals , Cell Lineage , Immunologic Memory
3.
Nature ; 629(8010): 201-210, 2024 May.
Article in English | MEDLINE | ID: mdl-38600376

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Subject(s)
Forkhead Box Protein O1 , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Stem Cells , T-Lymphocytes , Humans , Mice , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Tumor Microenvironment/immunology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
4.
Mol Ther ; 28(11): 2379-2393, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32735774

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has been highly successful in hematological malignancies leading to their US Food and Drug Administration (FDA) approval. However, the efficacy of CAR T cells in solid tumors is limited by tumor-induced immunosuppression, leading to the development of combination approaches, such as adjuvant programmed cell death 1 (PD-1) blockade. Current FDA-approved methods for generating CAR T cells utilize either anti-CD3 and interleukin (IL)-2 or anti-CD3/CD28 beads, which can generate a T cell product with an effector/exhausted phenotype. Whereas different cytokine preconditioning milieu, such as IL-7/IL-15, have been shown to promote T cell engraftment, the impact of this approach on CAR T cell responses to adjuvant immune-checkpoint blockade has not been assessed. In the current study, we reveal that the preconditioning of CAR T cells with IL-7/IL-15 increased CAR T cell responses to anti-PD-1 adjuvant therapy. This was associated with the emergence of an intratumoral CD8+CD62L+TCF7+IRF4- population that was highly responsive to anti-PD-1 therapy and mediated the vast majority of transcriptional and epigenetic changes in vivo following PD-1 blockade. Our data indicate that preservation of CAR T cells in a TCF7+ phenotype is crucial for their responsiveness to adjuvant immunotherapy approaches and should be a key consideration when designing clinical protocols.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy, Adoptive , Interleukin-15/administration & dosage , Neoplasms/therapy , Biomarkers, Tumor , Combined Modality Therapy , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Checkpoint Proteins/metabolism , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/etiology , Treatment Outcome
5.
Blood ; 128(10): 1396-407, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27338099

ABSTRACT

Epstein-Barr virus (EBV) is an oncovirus associated with several human malignancies including posttransplant lymphoproliferative disease in immunosuppressed patients. We show here that anti-EBV T-cell receptor-like monoclonal antibodies (TCR-like mAbs) E1, L1, and L2 bound to their respective HLA-A*0201-restricted EBV peptides EBNA1562-570, LMP1125-133, and LMP2A426-434 with high affinities and specificities. These mAbs recognized endogenously presented targets on EBV B lymphoblastoid cell lines (BLCLs), but not peripheral blood mononuclear cells, from which they were derived. Furthermore, these mAbs displayed similar binding activities on several BLCLs, despite inherent heterogeneity between different donor samples. A single weekly administration of the naked mAbs reduced splenomegaly, liver tumor spots, and tumor burden in BLCL-engrafted immunodeficient NOD-SCID/Il2rg(-/-) mice. In particular, mice that were treated with the E1 mAb displayed a delayed weight loss and significantly prolonged survival. In vitro, these TCR-like mAbs induced early apoptosis of BLCLs, thereby enhancing their Fc-dependent phagocytic uptake by macrophages. These data provide evidence for TCR-like mAbs as potential therapeutic modalities to target EBV-associated diseases.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , HLA-A2 Antigen/immunology , Herpesvirus 4, Human/immunology , Liver Neoplasms/prevention & control , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Flow Cytometry , Humans , Leukocytes, Mononuclear/immunology , Liver Neoplasms/immunology , Liver Neoplasms/virology , Mice , Mice, Inbred NOD , Mice, SCID , Phagocytosis/immunology
6.
Eur J Immunol ; 43(8): 2126-37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23619996

ABSTRACT

The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a cytoplasmic protein complex that mediates inflammatory responses to a broad array of danger signals. The inflammasome drives caspase-1 activation and promotes secretion of the pro-inflammatory cytokines IL-1ß and IL-18, and might also participate in other cellular processes. Here, we tried to identify new pathways regulated by the NLRP3 inflammasome in murine dendritic cells (DCs) in response to monosodium urate (MSU) crystals. Using a transcriptomic approach, we found that DCs from Nlrp3(-/-) mice responded to MSU with differential expression of genes involved in the DNA damage response and apoptosis. Upon exposure to MSU or other ROS-mobilizing stimuli (rotenone and γ-radiation), DNA fragmentation was markedly ameliorated in Nlrp3(-/-) and casp-1(-/-) DCs compared with WT DCs. Moreover, Nlrp3(-/-) DCs experienced significantly less oxidative DNA damage mediated by ROS. A significant decrease of the expression of several genes involved in double-strand and base-excision DNA repair was observed in WT DCs. Basal DNA repair capacity in WT DCs resulted in activation and stabilization of p53 in vitro and in vivo, which resulted in increased cell death compared with that in Nlrp3(-/-) DCs. These data provide the first evidence for the involvement of the NLRP3 inflammasome in DNA damage responses induced by cellular stress.


Subject(s)
Carrier Proteins/metabolism , DNA Damage/drug effects , DNA Repair/genetics , Dendritic Cells/metabolism , Inflammasomes/immunology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Carrier Proteins/genetics , Caspase 1/genetics , Cell Survival , Cells, Cultured , DNA Repair/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Enzyme Activation , Inflammation/chemically induced , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Peritonitis/chemically induced , Peritonitis/immunology , Reactive Oxygen Species , Rotenone/pharmacology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Suppressor Protein p53/metabolism , Uncoupling Agents/pharmacology , Uric Acid/pharmacology
7.
Cell Rep Med ; 4(2): 100917, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36696897

ABSTRACT

Signal transduction induced by chimeric antigen receptors (CARs) is generally believed to rely on the activity of the SRC family kinase (SFK) LCK, as is the case with T cell receptor (TCR) signaling. Here, we show that CAR signaling occurs in the absence of LCK. This LCK-independent signaling requires the related SFK FYN and a CD28 intracellular domain within the CAR. LCK-deficient CAR-T cells are strongly signaled through CAR and have better in vivo efficacy with reduced exhaustion phenotype and enhanced induction of memory and proliferation. These distinctions can be attributed to the fact that FYN signaling tends to promote proliferation and survival, whereas LCK signaling promotes strong signaling that tends to lead to exhaustion. This non-canonical signaling of CAR-T cells provides insight into the initiation of both TCR and CAR signaling and has important clinical implications for improvement of CAR function.


Subject(s)
Receptors, Chimeric Antigen , Proto-Oncogene Proteins/metabolism , CD28 Antigens , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , T-Lymphocytes , Receptors, Antigen, T-Cell , Proto-Oncogene Proteins c-fyn , Signal Transduction
8.
Cell Rep ; 42(8): 113014, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37605534

ABSTRACT

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Subject(s)
CRISPR-Cas Systems , Immune Checkpoint Inhibitors , Feedback , Suppressor of Cytokine Signaling Proteins/genetics , Signal Transduction
9.
Nat Commun ; 14(1): 6990, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914685

ABSTRACT

There is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the A2AR receptor. Understanding of the mechanism by which A2AR is regulated has been hindered by difficulty in identifying the cell types that express A2AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an A2AR eGFP reporter mouse is developed, enabling the expression of A2AR during ongoing anti-tumor immune responses to be assessed. This reveals that A2AR is highly expressed on all tumor-infiltrating lymphocyte subsets including Natural Killer (NK) cells, NKT cells, γδ T cells, conventional CD4+ and CD8+ T lymphocytes and on a MHCIIhiCD86hi subset of type 2 conventional dendritic cells. In response to PD-L1 blockade, the emergence of PD-1+A2AR- cells correlates with successful therapeutic responses, whilst IL-18 is identified as a cytokine that potently upregulates A2AR and synergizes with A2AR deficiency to improve anti-tumor immunity. These studies provide insight into the biology of A2AR in the context of anti-tumor immunity and reveals potential combination immunotherapy approaches.


Subject(s)
Neoplasms , Animals , Mice , Cytokines/metabolism , Immunity , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/genetics , Neoplasms/metabolism , Tumor Microenvironment
10.
Cancer Cell ; 40(10): 1190-1206.e9, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36179686

ABSTRACT

There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.


Subject(s)
F-Box Proteins , Leukemia, Myeloid, Acute , Alcohol Oxidoreductases , DNA-Binding Proteins , F-Box Proteins/genetics , HLA Antigens/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation , Protein-Arginine N-Methyltransferases/metabolism , Recurrence , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Cancer Res ; 81(23): 5803-5805, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853040

ABSTRACT

Cancer immunotherapy utilizing checkpoint blockade antibodies or adoptive cellular therapy (ACT) with tumor-specific T cells has led to unprecedented clinical responses in patients with cancer and has been considered one of the most significant breakthroughs in cancer treatment in the past decade. Nevertheless, many cancers remain refractory to these therapies due to the presence of an immunosuppressive tumor microenvironment. This has led to the innovative idea of combining ACT with checkpoint inhibition. A landmark 2004 study by Blank and colleagues published in Cancer Research was one of the original demonstrations that adoptive transfer of T cells lacking the negative T-cell regulator, PD-1, was able to restore functional T-cell antitumor activity, resulting in rapid regression of established tumors in a preclinical model. This work was instrumental in not only driving clinical studies utilizing checkpoint inhibition but also a new wave of recent trials involving checkpoint blockade in the setting of ACT.See related article by Blank and colleagues, Cancer Res 2004;64:1140-5.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , Immunotherapy , T-Lymphocytes , Tumor Microenvironment
12.
Nat Rev Immunol ; 21(12): 769-784, 2021 12.
Article in English | MEDLINE | ID: mdl-33879873

ABSTRACT

The antitumour activity of endogenous or adoptively transferred tumour-specific T cells is highly dependent on their differentiation status. It is now apparent that less differentiated T cells compared with fully differentiated effector T cells have better antitumour therapeutic effects owing to their enhanced capacity to expand and their long-term persistence. In patients with cancer, the presence of endogenous or adoptively transferred T cells with stem-like memory or precursor phenotype correlates with improved therapeutic outcomes. Advances in our understanding of T cell differentiation states at the epigenetic and transcriptional levels have led to the development of novel methods to generate tumour-specific T cells - namely, chimeric antigen receptor T cells - that are more persistent and resistant to the development of dysfunction. These include the use of novel culture methods before infusion, modulation of transcriptional, metabolic and/or epigenetic programming, and strategies that fine-tune antigen receptor signalling. This Review discusses existing barriers and strategies to overcome them for successful T cell expansion and persistence in the context of adoptive T cell immunotherapy for solid cancers.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Cell- and Tissue-Based Therapy , Humans , Lymphocyte Activation , Neoplasms/pathology
13.
Front Oncol ; 11: 626659, 2021.
Article in English | MEDLINE | ID: mdl-33898307

ABSTRACT

Epstein-Barr virus (EBV)-the prototypical human tumor virus-is responsible for 1-2% of the global cancer burden, but divergent strains seem to exist in different geographical regions with distinct predilections for causing lymphoid or epithelial malignancies. Here we report the establishment and characterization of Yu103, an Asia Pacific EBV strain with a highly remarkable provenance of being derived from nasopharyngeal carcinoma biopsy but subsequently propagated in human B-lymphoma cells and xenograft models. Unlike previously characterized EBV strains which are either predominantly B-lymphotropic or epitheliotropic, Yu103 evinces an uncanny capacity to infect and transform both B-lymphocytes and nasopharyngeal epithelial cells. Genomic and phylogenetic analyses indicated that Yu103 EBV lies midway along the spectrum of EBV strains known to drive lymphomagenesis or carcinogenesis, and harbors molecular features which likely account for its unusual properties. To our knowledge, Yu103 EBV is currently the only EBV isolate shown to drive human nasopharyngeal carcinoma and B-lymphoma, and should therefore provide a powerful novel platform for research on EBV-driven hematological and epithelial malignancies.

14.
Cancers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670734

ABSTRACT

Chimeric antigen receptor T cells (CAR-T) utilize T cell receptor (TCR) signaling cascades and the recognition functions of antibodies. This allows T cells, normally restricted by the major histocompatibility complex (MHC), to be redirected to target cells by their surface antigens, such as tumor associated antigens (TAAs). CAR-T technology has achieved significant successes in treatment of certain cancers, primarily liquid cancers. Nonetheless, many challenges hinder development of this therapy, such as cytokine release syndrome (CRS) and the efficacy of CAR-T treatments for solid tumors. These challenges show our inadequate understanding of this technology, particularly regarding CAR signaling, which has been less studied. To dissect CAR signaling, we designed a CAR that targets an epitope from latent membrane protein 2 A (LMP2 A) of the Epstein-Barr virus (EBV) presented on HLA*A02:01. Because of this, CAR and TCR signaling can be compared directly, allowing us to study the involvement of other signaling molecules, such as coreceptors. This comparison revealed that CAR was sufficient to bind monomeric antigens due to its high affinity but required oligomeric antigens for its activation. CAR sustained the transduced signal significantly longer, but at a lower magnitude, than did TCR. CD8 coreceptor was recruited to the CAR synapse but played a negligible role in signaling, unlike for TCR signaling. The distinct CAR signaling processes could provide explanations for clinical behavior of CAR-T therapy and suggest ways to improve the technology.

15.
Nat Commun ; 12(1): 3236, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050151

ABSTRACT

Adenosine is an immunosuppressive factor that limits anti-tumor immunity through the suppression of multiple immune subsets including T cells via activation of the adenosine A2A receptor (A2AR). Using both murine and human chimeric antigen receptor (CAR) T cells, here we show that targeting A2AR with a clinically relevant CRISPR/Cas9 strategy significantly enhances their in vivo efficacy, leading to improved survival of mice. Effects evoked by CRISPR/Cas9 mediated gene deletion of A2AR are superior to shRNA mediated knockdown or pharmacological blockade of A2AR. Mechanistically, human A2AR-edited CAR T cells are significantly resistant to adenosine-mediated transcriptional changes, resulting in enhanced production of cytokines including IFNγ and TNF, and increased expression of JAK-STAT signaling pathway associated genes. A2AR deficient CAR T cells are well tolerated and do not induce overt pathologies in mice, supporting the use of CRISPR/Cas9 to target A2AR for the improvement of CAR T cell function in the clinic.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptor, Adenosine A2A/genetics , T-Lymphocytes/transplantation , Adenosine/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Animals , CRISPR-Cas Systems/genetics , Cell Engineering/methods , Cell Line, Tumor/transplantation , Disease Models, Animal , Female , Gene Editing , Gene Expression Regulation, Neoplastic/immunology , Gene Knockdown Techniques , Gene Knockout Techniques , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , RNA, Small Interfering/metabolism , RNA-Seq , Receptor, Adenosine A2A/metabolism , Receptor, ErbB-2/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape/drug effects , Tumor Escape/genetics
16.
Nat Commun ; 12(1): 4746, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362900

ABSTRACT

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Subject(s)
Immunity, Cellular , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neoplasms/immunology , Animals , Antineoplastic Agents , Cell Line, Tumor , Cytokines , Histocompatibility Antigens Class I/genetics , Humans , Immunity , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Neoplasm Metastasis , Neoplasms/pathology
17.
Clin Cancer Res ; 26(2): 487-504, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31636098

ABSTRACT

PURPOSE: Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immunotherapies. EXPERIMENTAL DESIGN: The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoString-based analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. RESULTS: The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8+ T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8+ T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. CONCLUSIONS: These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Immunotherapy/methods , Macrophages/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Receptors, CXCR3/metabolism , Tumor Microenvironment
18.
Clin Transl Immunology ; 8(5): e1046, 2019.
Article in English | MEDLINE | ID: mdl-31073403

ABSTRACT

Adoptive cellular therapy involving genetic modification of T cells with chimeric antigen receptor (CAR) transgene offers a promising strategy to broaden the efficacy of this approach for the effective treatment of cancer. Although remarkable antitumor responses have been observed following CAR T-cell therapy in a subset of B-cell malignancies, this has yet to be extended in the context of solid cancers. A number of promising strategies involving reprogramming the tumor microenvironment, increasing the specificity and safety of gene-modified T cells and harnessing the endogenous immune response have been tested in preclinical models that may have a significant impact in patients with solid cancers. This review will discuss these exciting new developments and the challenges that must be overcome to deliver a more sustained and potent therapeutic response.

20.
Cancer Immunol Res ; 6(9): 1069-1081, 2018 09.
Article in English | MEDLINE | ID: mdl-30018045

ABSTRACT

Immunotherapy is widely accepted as a powerful new treatment modality for the treatment of cancer. The most successful form of immunotherapy to date has been the blockade of the immune checkpoints PD-1 and CTLA-4. Combining inhibitors of both PD-1 and CTLA-4 increases the proportion of patients who respond to immunotherapy. However, most patients still do not respond to checkpoint inhibitors, and prognostic biomarkers are currently lacking. Therefore, a better understanding of the mechanism by which these checkpoint inhibitors enhance antitumor immune responses is required to more accurately predict which patients are likely to respond and further enhance this treatment modality. Our current study of two mouse tumor models revealed that CD4+Foxp3- cells activated by dual PD-1/CTLA-4 blockade modulated the myeloid compartment, including activation of conventional CD103+ dendritic cells (DC) and expansion of a myeloid subset that produces TNFα and iNOS (TIP-DCs). CD4+Foxp3- T cell-mediated activation of CD103+ DCs resulted in enhanced IL12 production by these cells and IL12 enhanced the therapeutic effect of dual PD-1/CTLA-4 blockade. Given the importance of these myeloid subsets in the antitumor immune response, our data point to a previously underappreciated role of CD4+Foxp3- cells in modulating this arm of the antitumor immune response. Cancer Immunol Res; 6(9); 1069-81. ©2018 AACR.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/antagonists & inhibitors , Dendritic Cells/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antigens, CD/genetics , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Hepatocyte Nuclear Factor 3-gamma/genetics , Immunotherapy , Integrin alpha Chains/genetics , Interleukin-12/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL