Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 762
Filter
1.
Small ; 20(24): e2307963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38183362

ABSTRACT

pH-dependent peptide biomaterials hold tremendous potential for cell delivery and tissue engineering. However, identification of responsive self-assembling sequences with specified secondary structure remains a challenge. In this work, An experimental procedure based on the one-bead one-compound (OBOC) combinatorial library is developed to rapidly screen self-assembling Ɵ-sheet peptides at neutral aqueous solution (pH 7.5) and disassemble at weak acidic condition (pH 6.5). Using the hydrophobic fluorescent molecule thioflavin T (ThT) as a probe, resin beads displaying self-assembling peptides show fluorescence under pH 7.5 due to the insertion of ThT into the hydrophobic domain, and are further cultured in pH 6.5 solution. The beads with extinguished fluorescence are selected. Three heptapeptides are identified that can self-assemble into nanofibers or nanoparticles at pH 7.5 and disassemble at pH 6.5. P1 (LVEFRHY) shows a rapid acid response and morphology transformation with pH modulation. Changes in the charges of histidine and hydrophobic phenyl motif of phenylalanine may play important roles in the formation of pH-responsive Ɵ-sheet nanofiber. This high-throughput screening method provides an efficient way to identify pH-dependent Ɵ-sheet self-assembling peptide and gain insights into structural design of such nanomaterials.


Subject(s)
Peptides , Hydrogen-Ion Concentration , Peptides/chemistry , Protein Conformation, beta-Strand , High-Throughput Screening Assays/methods , Nanofibers/chemistry , Hydrophobic and Hydrophilic Interactions , Benzothiazoles/chemistry
2.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38323672

ABSTRACT

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Subject(s)
Bombyx , Insect Proteins , Nucleopolyhedroviruses , Animals , Bombyx/enzymology , Bombyx/genetics , Bombyx/virology , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/growth & development , Larva/virology , Metalloproteins/metabolism , Metalloproteins/genetics , Molybdenum Cofactors , Nucleopolyhedroviruses/physiology , RNA Interference , Uric Acid/metabolism
3.
Insect Mol Biol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613398

ABSTRACT

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

4.
Opt Lett ; 49(20): 5890-5892, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39404564

ABSTRACT

Non-radiative bound states in the continuum (BICs) allow the construction of resonances with high-quality (Q) factors and have emerged as an attractive platform for manipulating light-matter interactions on the nanoscale. However, current studies on symmetry-protected BICs (SP-BICs) suffer from a fundamental trade-off between the Q factor and asymmetric parameters, presenting a significant hurdle for practical applications. Here, utilizing the eigenfield perturbations, we successfully break the conventional inverse quadratic law of the SP-BICs and realize the robust high-Q resonances against the asymmetric parameters. We find the introductions of the central notch can efficiently boost the resonance of the electric quadrupole, which results in the enhancement of multiple-mode interference, and thus improving Q factors, while the constant effective refractive index guarantees the resonance with a stable wavelength. Our findings provide a promising strategy for modulating the light-matter interaction and may pave the way for applications in future high-performance optoelectronic devices.

5.
Acta Pharmacol Sin ; 45(9): 1848-1860, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.


Subject(s)
Angiotensin II , Forkhead Box Protein O3 , Hypertension , Mice, Knockout , Muscle, Smooth, Vascular , Signal Transduction , Vascular Remodeling , WNK Lysine-Deficient Protein Kinase 1 , Animals , Muscle, Smooth, Vascular/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Mice , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/genetics , Male , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
6.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126109

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have a variety of cardiovascular and renoprotective effects and have been developed as novel agents for the treatment of heart failure. However, the beneficial mechanisms of SGLT2i on cardiac tissue need to be investigated further. In this study, we established a mouse model of acute myocardial infarction (AMI) using coronary artery constriction surgery and investigated the role of dapagliflozin (DAPA) in protecting cardiomyocytes from hypoxic injury induced by AMI. In vitro experiments were done using hypoxic cultured H9c2 ventricular cells to verify this potential mechanism. Expression of the SIRT family and related genes and proteins was verified by qPCR, Western blotting and immunofluorescence staining, and the intrinsic potential mechanism of cardiomyocyte death due to AMI and hypoxia was comprehensively investigated by RNA sequencing. The RNA sequencing results of cardiomyocytes from AMI mice showed that the SIRT family may be mainly involved in the mechanisms of hypoxia-induced cardiomyocyte death. In vitro hypoxia-induced ventricular cells showed the role of dapagliflozin in conferring resistance to hypoxic injury in cardiomyocytes. It showed that SIRT1/3/6 were downregulated in H9c2 cells in a hypoxic environment, and the addition of dapagliflozin significantly increased the gene and protein expression of SIRT1, 3 and 6. We then verified the underlying mechanisms induced by dapagliflozin in hypoxic cardiomyocytes using RNA-seq, and found that dapagliflozin upregulated the hypoxia-induced gene downregulation, which includes ESRRA, EPAS1, AGTRAP, etc., that associated with SIRTs-related and apoptosis-related signaling to prevent H9c2 cell death. This study provides laboratory data for SGLT2i dapagliflozin treatment of AMI and confirms that dapagliflozin can be used to treat hypoxia-induced cellular necrosis in cardiomyocytes, in which SIRT1 and SIRT3 may play an important role. This opens up further opportunities for SGLT2i in the treatment of heart disease.


Subject(s)
Benzhydryl Compounds , Glucosides , Myocardial Infarction , Myocytes, Cardiac , Signal Transduction , Sirtuin 1 , Sodium-Glucose Transporter 2 Inhibitors , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Signal Transduction/drug effects , Male , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sirtuins/metabolism , Sirtuins/genetics , Cell Line , Mice, Inbred C57BL , Disease Models, Animal , Cell Hypoxia/drug effects , Rats , Apoptosis/drug effects
7.
Angew Chem Int Ed Engl ; : e202412434, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177989

ABSTRACT

The practical application of solid-state polymer lithium-metal batteries (LMBs) is plagued by the inferior ionic conductivity of the applied polymer electrolytes (PEs), which is caused by the coupling of ion transport with the motion of polymer segments. Here, solvated molecules based on ionic liquid and lithium salt with strong Li+-solvent interaction are inserted into an elaborately engineered perfluoropolymer electrolyte via ionic dipole interaction, extensively facilitating Li+ transport and improving mechanical properties. The intensified formation of solvation structures of contact ion pairs and ionic aggregates, as well as the strong electron-withdrawal properties of the F atoms in perfluoropolymers, give the PE high electrochemical stability and excellent interfacial stability. As a result, Li||Li symmetric cells demonstrate a lifetime of 2500 h and an exceptionally high critical current density above 2.3 mA cm-2, Li||LiFePO4 batteries exhibit consistent cycling for 550 cycles at 10 C, and Li||uncoated LiNi0.8Co0.1Mn0.1O2 cells achieve 1000 cycles at 0.5 C with an average Coulombic efficiency of 98.45%, one of the best results reported to date based on PEs. Our discovery sheds fresh light on the targeted synergistic regulation of the electro-chemo-mechanical properties of PEs to extend the cycle life of LMBs.

8.
Ann Surg ; 277(1): 43-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35781462

ABSTRACT

OBJECTIVE: To assess the safety and efficacy of antimicrobial peptide PL-5 (Peceleganan) spray in the treatment of wound infections. BACKGROUND: Antimicrobial peptide PL-5 spray is a novel topical antimicrobial agent. METHODS: We conducted a multicenter, open-label, randomized, controlled phase IIb clinical trial to evaluate the efficacy and safety of PL-5 spray, as compared with silver sulfadiazine, in patients with skin wound infections. The primary efficacy outcome was the clinical efficacy rate on the first day after ending the treatment (D8). The secondary efficacy outcome was the clinical efficacy rate on the fifth day posttreatment (D5), the bacteria clearance rate, and the overall efficacy rate at the mentioned 2 time points. The safety outcomes included adverse reactions and pharmacokinetic analysis posttreatment. RESULTS: A total of 220 patients from 27 hospitals in China were randomly assigned to 4 groups. On D8, the efficacy rate was 100.0%, 96.7%, 96.7% for the 1Ā‰ PL-5, 2Ā‰ PL-5, 4Ā‰ PL-5 groups, respectively, as compared with 87.5% for the control group. The efficacy rate among the 4 groups was significantly different ( P <0.05). On D5, the efficacy rate was 100.0%, 93.4%, 98.3% for the 1Ā‰ PL-5, 2Ā‰ PL-5, 4Ā‰ PL-5 groups, respectively, as compared with 82.5% for the control group. The efficacy rate among the 4 groups was significantly different ( P <0.05). The blood concentration of PL-5 was not detectable in pharmacokinetic analysis. No severe adverse event related to the application of PL-5 was reported. CONCLUSIONS: Antimicrobial peptide PL-5 spray is safe and effective for the treatment of skin wound infections. TRIAL REGISTRATION: ChiCTR2000033334.


Subject(s)
Anti-Infective Agents, Local , Wound Infection , Humans , Treatment Outcome , Bacteria , China , Double-Blind Method
9.
Small ; 19(50): e2304677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632318

ABSTRACT

To achieve high-performance solid-state lithium-metal batteries (SSLMBs), solid electrolytes with high ionic conductivity, high oxidative stability, and high mechanical strength are necessary. However, balancing these characteristics remains dramatically challenging and is still not well addressed. Herein, a simple yet effective design strategy is presented for the development of high-performance polymer electrolytes (PEs) by exploring the synergistic effect between dynamic H-bonded networks and conductive zwitterionic nanochannels. Multiple weak intermolecular interactions along with ample nanochannels lead to high oxidative stability (over 5Ā V), improved mechanical properties (strain of 1320%), and fast ion transport (ionic conductivity of 10-4 S cm-1 ) of PEs. The amphoteric ionic functional units also effectively regulate the lithium ion distribution and confine the anion transport to achieve uniform lithium ion deposition. As a result, the assembled SSLMBs exhibit excellent capacity retention and long-term cycle stability (average Coulombic efficiency: 99.5%, >1000 cycles with LiFePO4 cathode; initial capacity: 202 mAh g-1 , average Coulombic efficiency: 96%, >230 cycles with LiNi0.8 Co0.1 Mn0.1 O2 cathode). It is exciting to note that the corresponding flexible cellsĀ can be cycled stably and can withstand severe deformation. The resulting polyzwitterion-mediated PE therefore offers great promise for the next-generation safe and high-energy-density flexible energy storage devices.

10.
Insect Mol Biol ; 32(5): 558-574, 2023 10.
Article in English | MEDLINE | ID: mdl-37209025

ABSTRACT

The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Bombyx/genetics , Uric Acid/metabolism , Nucleopolyhedroviruses/physiology , Apoptosis , Larva
11.
Brain Behav Immun ; 109: 51-62, 2023 03.
Article in English | MEDLINE | ID: mdl-36587855

ABSTRACT

Astrocyte-derived extracellular vesicles (ADEs) allow the in vivo probing of the inflammatory status of astrocytes practical. Serum sample and ADEs were used to test the inflammatory hypothesis in 70 patients with major depressive disorder (MDD) and 70 matched healthy controls (HCs). In serum, tumor necrosis factor α (TNF-α) and interleukin (IL)-17A were significantly increased, where as IL-12p70 was significantly reduced in the MDD patients compared with HCs. In ADEs, all inflammatory markers (Interferon-ƎĀ³, IL-12p70, IL-1Ɵ, IL-2, IL-4, IL-6, TNF-α, and IL-17A) except IL-10 were significantly increased in the MDD patients, the Hedge's g values of elevated inflammatory markers varied from 0.48 to 1.07. However, there were no differences of all inflammatory markers whether in serum or ADEs between MDD-drug free and medicated subgroups. The association of inflammatory biomarkers between ADEs and serum did not reach statistically significance after multi-comparison correction neither in the HCs nor MDD patients. The spearman coefficients between inflammatory factors and clinical characteristics in the MDD patients, such as onset age, disease course, current episode duration, and severity of depression, were nonsignificant after multi-comparison correction. In the receiver operating characteristic curves analysis, the corrected partial area under the curve (pAUC) of each inflammatory markers in ADEs ranged from 0.522 to 0.696, and the combination of these inflammatory factors achieved a high pAUC (>0.9). Our findings support the inflammatory glial hypothesis of depression, and suggests that in human ADEs could be a useful tool to probe the in vivo astrocyte status.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Astrocytes , Tumor Necrosis Factor-alpha , Cytokines , Inflammation , Interleukin-12
12.
Europace ; 26(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38195705

ABSTRACT

AIMS: Metabolic syndrome (MetS) is associated with arrhythmias and cardiovascular mortality. Arrhythmogenesis in MetS results from atrial structural and electrical remodelling. The small-conductance Ca2+-activated K+ (SK) currents modulate atrial repolarization and may influence atrial arrhythmogenicity. This study investigated the regulation of SK current perturbed by a high-fat diet (HFD) to mimic MetS. METHODS AND RESULTS: Thirty mice were divided into two groups that were fed with normal chow (CTL) and HFD for 4 months. Electrocardiography and echocardiography were used to detect cardiac electrical and structure remodelling. Atrial action potential duration (APD) and calcium transient duration (CaTD) were measured by optical mapping of Langendorff-perfused mice hearts. Atrial fibrillation (AF) inducibility and duration were assessed by burst pacing. Whole-cell patch clamp was performed in primarily isolated atrial myocytes for SK current density. The SK current density is higher in atrial myocytes from HFD than in CTL mice (P ≤ 0.037). The RNA and protein expression of SK channels are increased in HFD mice (P ≤ 0.041 and P ≤ 0.011, respectively). Action potential duration is shortened in HFD compared with CTL (P ≤ 0.015). The shortening of the atrial APD in HFD is reversed by the application of 100Ć¢Ā€Ā…nM apamin (P ≤ 0.043). Compared with CTL, CaTD is greater in HFD atria (P ≤ 0.029). Calcium transient decay (Tau) is significantly higher in HFD than in CTL (P = 0.001). Both APD and CaTD alternans thresholds were higher in HFD (P ≤ 0.043), along with higher inducibility and longer duration of AF in HFD (P ≤ 0.023). CONCLUSION: Up-regulation of apamin-sensitive SK currents plays a partial role in the atrial arrhythmogenicity of HFD mice.


Subject(s)
Atrial Fibrillation , Calcium , Mice , Animals , Calcium/metabolism , Potassium/metabolism , Apamin/metabolism , Small-Conductance Calcium-Activated Potassium Channels/genetics , Action Potentials/physiology , Myocytes, Cardiac/metabolism
13.
Oral Dis ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154262

ABSTRACT

OBJECTIVE: Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs. SUBJECTS AND METHODS: Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study. sEVs were isolated from both fresh lesions and cell supernatant, and were examined by western blotting, nanoparticle tracking analysis and transmission electron microscopy. Western blot analysis, immunohistochemistry and immunofluorescence were adopted to screening candidate regulator of sEV size. Specific inhibitors and siRNA were employed to validate the role of dysregulated p-AKT/vacuolar protein sorting-associated protein 4B (VPS4B) signaling on the size of sEVs in endothelial cells. RESULTS: The size of sEVs derived from both VM lesion tissues and cell model was significantly increased. VPS4B, whose expression level was mostly significantly downregulated in VM endothelial cells, was responsible for the size change of sEVs. Targeting abnormal AKT activation corrected the size change of sEVs by recovering the expression level of VPS4B. CONCLUSION: Downregulated VPS4B in endothelial cells, resulted from abnormally activated AKT signaling, contributed to the increased size of sEVs in VMs.

14.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532315

ABSTRACT

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12Ā h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Subject(s)
Bombyx , Lepidoptera , Pesticides , Pyrethrins , Animals , Bombyx/genetics , Bombyx/metabolism , Transcriptome , Lepidoptera/genetics , Fat Body , Gene Expression Profiling , Pyrethrins/toxicity , Pyrethrins/metabolism , Pesticides/metabolism
15.
Chem Soc Rev ; 51(8): 3181-3225, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35348147

ABSTRACT

With the aim of addressing the global warming issue and fossil energy shortage, eco-friendly and sustainable renewable energy technologies are urgently needed. In comparison to energy conversion, studies on energy storage fall behind and remain largely to be explored. By storing energy from electrochemical processes at the electrode surface, supercapacitors (SCs) bridge the performance gap between electrostatic double-layer capacitors and batteries. Organic electrode materials have drawn extensive attention because of their special power density, good round trip efficiency and excellent cycle stability. Porous organic polymers (POPs) have drawn extensive attention as attractive electrode materials in SCs. In this review, we present and discuss recent advancements and design principles of POPs as efficient electrode materials for SCs from the perspectives of synthetic strategies and the structure-performance relationships of POPs. Finally, we put forward the outlook and prospects of POPs for SCs.

16.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36991654

ABSTRACT

Driving safely is crucial to avoid death, injuries, or financial losses that can be sustained in an accident. Thus, a driver's physical state should be monitored to prevent accidents, rather than vehicle-based or behavioral measurements, and provide reliable information in this regard. Electrocardiography (ECG), electroencephalography (EEG), electrooculography (EOG), and surface electromyography (sEMG) signals are used to monitor a driver's physical state during a drive. The purpose of this study was to detect driver hypovigilance (drowsiness, fatigue, as well as visual and cognitive inattention) using signals collected from 10 drivers while they were driving. EOG signals from the driver were preprocessed to remove noise, and 17 features were extracted. ANOVA (analysis of variance) was used to select statistically significant features that were then loaded into a machine learning algorithm. We then reduced the features by using principal component analysis (PCA) and trained three classifiers: support vector machine (SVM), k-nearest neighbor (KNN), and ensemble. A maximum accuracy of 98.7% was obtained for the classification of normal and cognitive classes under the category of two-class detection. Upon considering hypovigilance states as five-class, a maximum accuracy of 90.9% was achieved. In this case, the number of detection classes increased, resulting in a reduction in the accuracy of detecting more driver states. However, with the possibility of incorrect identification and the presence of issues, the ensemble classifier's performance produced an enhanced accuracy when compared to others.


Subject(s)
Automobile Driving , Electrooculography , Wakefulness , Electromyography , Electroencephalography/methods , Machine Learning , Support Vector Machine
17.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069141

ABSTRACT

With the increasing prevalence of sleep deprivation (SD)-related disorders, the effective treatment of sleep disorders has become a critical health research topic. Thus, we hypothesized and investigated the effectiveness of a 3-week melatonin intervention on neuropsychiatric behavioral responses mediated throughout melatonin receptors, gut microbiota, and lipid metabolites in rats with chronic SD. Eighteen 6-week-old Wistar rats were used and divided into the control grup (C, n = 6), SD group (n = 6), and melatonin-supplemented group (SDM, n = 6). During weeks 0 to 6, animals were provided with the AIN-93M diet and free access to water. Four-week chronic SD was conducted from weeks 7 to 10. Exogenous melatonin administration (10 mg/kg BW) was injected intraperitoneally 1 h before the daily administration of SD for 3 weeks in the SDM group. SD rats exhibited anxiety-like behavior, depression-like behavior, and cognitive impairment. Exogenous melatonin administration ameliorated neuropsychiatric behaviors induced by chronic SD. Analysis of fecal metabolites indicated that melatonin may influence brain messaging through the microbiota-gut-brain axis by increasing the production of short-chain fatty acids (SCFA) and decreasing the production of secondary bile acids (SBA). Four-week SD reduced the cerebral cortex expression of MT1, but not in the colon. Chronic SD led to anxiety and depression-like behaviors and cognitive decline, as well as the reduced intestinal level of SCFAs and the enhanced intestinal level of SBAs in rats. In this work, we confirmed our hypothesis that a 3-week melatonin intervention on neuropsychiatric behavioral response mediated throughout melatonin receptors, gut microbiota, and lipid metabolites in rats with chronic SD.


Subject(s)
Gastrointestinal Microbiome , Melatonin , Microbiota , Rats , Animals , Sleep Deprivation/drug therapy , Sleep Deprivation/complications , Melatonin/pharmacology , Melatonin/therapeutic use , Receptors, Melatonin , Rats, Wistar , Fatty Acids, Volatile/pharmacology
18.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047815

ABSTRACT

Sodium-glucose transporter 2 inhibitors (SGLT2is) exert significant cardiovascular and heart failure benefits in type 2 diabetes mellitus (DM) patients and can help reduce cardiac arrhythmia incidence in clinical practice. However, its effect on regulating cardiomyocyte mitochondria remain unclear. To evaluate its effect on myocardial mitochondria, C57BL/6J mice were divided into four groups, including: (1) control, (2) high fat diet (HFD)-induced metabolic disorder and obesity (MDO), (3) MDO with empagliflozin (EMPA) treatment, and (4) MDO with glibenclamide (GLI) treatment. All mice were sacrificed after 16 weeks of feeding and the epicardial fat secretome was collected. H9c2 cells were treated with the different secretomes for 18 h. ROS production, Ca2+ distribution, and associated proteins expression in mitochondria were investigated to reveal the underlying mechanisms of SGLT2is on cardiomyocytes. We found that lipotoxicity, mitochondrial ROS production, mitochondrial Ca2+ overload, and the levels of the associated protein, SOD1, were significantly lower in the EMPA group than in the MDO group, accompanied with increased ATP production in the EMPA-treated group. The expression of mfn2, SIRT1, and SERCA were also found to be lower after EMPA-secretome treatment. EMPA-induced epicardial fat secretome in mice preserved a better cardiomyocyte mitochondrial biogenesis function than the MDO group. In addition to reducing ROS production in mitochondria, it also ameliorated mitochondrial Ca2+ overload caused by MDO-secretome. These findings provide evidence and potential mechanisms for the benefit of SGLT2i in heart failure and arrhythmias.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Myocytes, Cardiac/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Sodium-Glucose Transporter 2/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Heart Failure/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Mitochondria, Heart/metabolism , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/metabolism
19.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685875

ABSTRACT

Head and neck squamous cell carcinoma (HNSC) exhibits genetic heterogeneity in etiologies, tumor sites, and biological processes, which significantly impact therapeutic strategies and prognosis. While the influence of human papillomavirus on clinical outcomes is established, the molecular subtypes determining additional treatment options for HNSC remain unclear and inconsistent. This study aims to identify distinct HNSC molecular subtypes to enhance diagnosis and prognosis accuracy. In this study, we collected three HNSC microarrays (n = 306) from the Gene Expression Omnibus (GEO), and HNSC RNA-Seq data (n = 566) from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes (DEGs) and validate our results. Two scoring methods, representative score (RS) and perturbative score (PS), were developed for DEGs to summarize their possible activation functions and influence in tumorigenesis. Based on the RS and PS scoring, we selected candidate genes to cluster TCGA samples for the identification of molecular subtypes in HNSC. We have identified 289 up-regulated DEGs and selected 88 genes (called HNSC88) using the RS and PS scoring methods. Based on HNSC88 and TCGA samples, we determined three HNSC subtypes, including one HPV-associated subtype, and two HPV-negative subtypes. One of the HPV-negative subtypes showed a relationship to smoking behavior, while the other exhibited high expression in tumor immune response. The Kaplan-Meier method was used to compare overall survival among the three subtypes. The HPV-associated subtype showed a better prognosis compared to the other two HPV-negative subtypes (log rank, p = 0.0092 and 0.0001; hazard ratio, 1.36 and 1.39). Additionally, within the HPV-negative group, the smoking-related subgroup exhibited worse prognosis compared to the subgroup with high expression in immune response (log rank, p = 0.039; hazard ratio, 1.53). The HNSC88 not only enables the identification of HPV-associated subtypes, but also proposes two potential HPV-negative subtypes with distinct prognoses and molecular signatures. This study provides valuable strategies for summarizing the roles and influences of genes in tumorigenesis for identifying molecular signatures and subtypes of HNSC.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Humans , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Human Papillomavirus Viruses
20.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902462

ABSTRACT

Currently, computed tomography and conventional X-ray radiography usually generate a micro-artifact around metal implants. This metal artifact frequently causes false positive or negative diagnoses of bone maturation or pathological peri-implantitis around implants. In an attempt to repair the artifacts, a highly specific nanoprobe, an osteogenic biomarker, and nano-Au-Pamidronate were designed to monitor the osteogenesis. In total, 12 Sprague Dawley rats were included in the study and could be chategorized in 3 groups: 4 rats in the X-ray and CT group, 4 rats in the NIRF group, and 4 rats in the sham group. A titanium alloy screw was implanted in the anterior hard palate. The X-ray, CT, and NIRF images were taken 28 days after implantation. The X-ray showed that the tissue surrounded the implant tightly; however, a gap of metal artifacts was noted around the interface between dental implants and palatal bone. Compared to the CT image, a fluorescence image was noted around the implant site in the NIRF group. Furthermore, the histological implant-bone tissue also exhibited a significant NIRF signal. In conclusion, this novel NIRF molecular imaging system precisely identifies the image loss caused by metal artifacts and can be applied to monitoring bone maturation around orthopedic implants. In addition, by observing the new bone formation, a new principle and timetable for an implant osseointegrated with bone can be established and a new type of implant fixture or surface treatment can be evaluated using this system.


Subject(s)
Dental Implants , Osseointegration , Rats , Animals , Osteogenesis , Rats, Sprague-Dawley , Maxilla , Prostheses and Implants , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL