Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Exp Immunol ; 216(3): 307-317, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38353127

ABSTRACT

FcRn, a receptor originally known for its involvement in IgG and albumin transcytosis and recycling, is also important in the establishment of the innate and adaptive immune response. Dysregulation of the immune response has been associated with variations in FcRn expression, as observed in cancer. Recently, a link between autophagy and FcRn expression has been demonstrated. Knowing that autophagy is strongly involved in the development of reperfusion injury in kidney transplantation and that albuminemia is transiently decreased in the first 2 weeks after transplantation, we investigated variations in FcRn expression after kidney transplantation. We monitored FcRn levels by flow cytometry in leukocytes from 25 renal transplant patients and considered parameters such as albumin concentrations, estimated glomerular filtration rate, serum creatinine, serum IgG levels, and ischaemia/reperfusion time. Two groups of patients could be distinguished according to their increased or non-increased FcRn expression levels between days 2 and 6 (d2-d6) post-transplantation. Leukocyte FcRn expression at d2-d6 was correlated with albumin concentrations at d0-d2. These results suggest that albumin concentrations at d0-d2 influence FcRn expression at d2-d6, raising new questions about the mechanisms underlying these original observations.


Subject(s)
Kidney Transplantation , Leukocytes , Receptors, Fc , Adult , Aged , Female , Humans , Male , Middle Aged , Glomerular Filtration Rate , Immunoglobulin G/immunology , Leukocytes/immunology , Leukocytes/metabolism , Receptors, Fc/metabolism , Receptors, Fc/genetics , Serum Albumin
2.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36077002

ABSTRACT

Understanding the biological mechanisms underlying the pH-dependent nature of FcRn binding, as well as the various factors influencing the affinity to FcRn, was concurrent with the arrival of the first recombinant IgG monoclonal antibodies (mAbs) and IgG Fc-fusion proteins in clinical practice. IgG Fc-FcRn became a central subject of interest for the development of these drugs for the comfort of patients and good clinical responses. In this review, we describe (i) mAb mutations close to and outside the FcRn binding site, increasing the affinity for FcRn at acidic pH and leading to enhanced mAb half-life and biodistribution, and (ii) mAb mutations increasing the affinity for FcRn at acidic and neutral pH, blocking FcRn binding and resulting, in vivo, in endogenous IgG degradation. Mutations modifying FcRn binding are discussed in association with pH-dependent modulation of antigen binding and (iii) anti-FcRn mAbs, two of the latest innovations in anti-FcRn mAbs leading to endogenous IgG depletion. We discuss the pharmacological effects, the biological consequences, and advantages of targeting IgG-FcRn interactions and their application in human therapeutics.


Subject(s)
Antibodies, Monoclonal , Receptors, Fc , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Histocompatibility Antigens Class I , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Tissue Distribution
3.
Front Immunol ; 13: 1054425, 2022.
Article in English | MEDLINE | ID: mdl-36389739

ABSTRACT

The neonatal Fc receptor (FcRn) plays a central role in recycling and biodistributing immunoglobulin G. FcRn is also involved in many physiological immune functions as well as pathological immune responses in cancer or autoimmune diseases. Low levels of FcRn in tumor cells and the microenvironment is associated with poor prognosis in non-small cell lung cancers. Among cells that are present in the tumor microenvironment, macrophages express high levels of FcRn. Macrophages are involved in these pathophysiological contexts by their dual differentiation states of pro- or anti-inflammatory macrophages. However, variations in FcRn protein expression have not been described in macrophage subtypes. In this work, we studied FcRn expression in an in vitro model of pro- and anti-inflammatory macrophage differentiation. We demonstrated an inverse relation between FcRn protein and mRNA expression in macrophage populations. Autophagy, which is involved in protein degradation and acquisition of phagocytic function in macrophages, participated in regulating FcRn levels. Intravenous immunoglobulin protected FcRn against autophagosome degradation in anti-inflammatory macrophages. Our data demonstrate that autophagy participates in regulating FcRn expression in pro- and anti-inflammatory macrophages. This finding raises new questions concerning the regulation of FcRn in immune functions.


Subject(s)
Histocompatibility Antigens Class I , Receptors, Fc , Macrophages , Autophagy/genetics
4.
Pharmacol Ther ; 233: 108022, 2022 05.
Article in English | MEDLINE | ID: mdl-34687769

ABSTRACT

Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies/therapeutic use , Humans , Immunologic Factors , Pandemics , RNA, Viral
5.
J Transl Autoimmun ; 4: 100122, 2021.
Article in English | MEDLINE | ID: mdl-34568803

ABSTRACT

Since the neonatal IgG Fc receptor (FcRn) was discovered, its role has evolved from immunoglobulin recycling and biodistribution to antigen presentation and immune complex routing, bringing it to the center of both humoral and cellular immune responses. FcRn is thus involved in the pathophysiology of immune-related diseases such as cancer, infection, and autoimmune disorders. This review focuses on the role of FcRn in autoimmunity, based on the available data from both animal models and human studies. The knowledge concerning ways in which FcRn is involved in autoimmune response has led to the development of inhibitors for the treatment of autoimmune diseases, also described here. Up to date, the literature remains scarce, shedding light on the need for further studies to fully understand the various pathophysiological roles of this unique receptor.

SELECTION OF CITATIONS
SEARCH DETAIL