Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Commun Biol ; 5(1): 1253, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36380082

ABSTRACT

Theileria parasites are responsible for devastating cattle diseases, causing major economic losses across Africa and Asia. Theileria spp. stand apart from other apicomplexa parasites by their ability to transform host leukocytes into immortalized, hyperproliferating, invasive cells that rapidly kill infected animals. The emergence of resistance to the theilericidal drug Buparvaquone raises the need for new anti-Theileria drugs. We developed a microscopy-based screen to reposition drugs from the open-access Medicines for Malaria Venture (MMV) Pathogen Box. We show that Trifloxystrobin (MMV688754) selectively kills lymphocytes or macrophages infected with Theileria annulata or Theileria parva parasites. Trifloxystrobin treatment reduced parasite load in vitro as effectively as Buparvaquone, with similar effects on host gene expression, cell proliferation and cell cycle. Trifloxystrobin also inhibited parasite differentiation to merozoites (merogony). Trifloxystrobin inhibition of parasite survival is independent of the parasite TaPin1 prolyl isomerase pathway. Furthermore, modeling studies predicted that Trifloxystrobin and Buparvaquone could interact distinctly with parasite Cytochrome B and we show that Trifloxystrobin was still effective against Buparvaquone-resistant cells harboring TaCytB mutations. Our study suggests that Trifloxystrobin could provide an effective alternative to Buparvaquone treatment and represents a promising candidate for future drug development against Theileria spp.


Subject(s)
Antiprotozoal Agents , Parasites , Theileria annulata , Cattle , Animals , Antiprotozoal Agents/pharmacology , Theileria annulata/genetics
2.
ACS Infect Dis ; 8(7): 1356-1366, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35732073

ABSTRACT

Neglected tropical diseases (NTDs), including trypanosomiasis, leishmaniasis, and schistosomiasis, result in a significant burden in terms of morbidity and mortality worldwide every year. Current antiparasitic drugs suffer from several limitations such as toxicity, no efficacy toward all of the forms of the parasites' life cycle, and/or induction of resistance. Histone-modifying enzymes play a crucial role in parasite growth and survival; thus, the use of epigenetic drugs has been suggested as a strategy for the treatment of NTDs. We tested structurally different HDACi 1-9, chosen from our in-house library or newly synthesized, against Trypanosoma cruzi, Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all of the tested parasites, but it was too toxic against host cells, hampering further studies. The retinoic 2'-aminoanilide 8 was less potent than 4 in all parasitic assays, but as its toxicity is considerably lower, it could be the starting structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite growth combined with moderate toxicity. In S. mansoni, 4's close analogs 17-20 were tested in new transformed schistosomula (NTS) and adult worms displaying high death induction against both parasite forms. Among them, 17 and 19 exhibited very low toxicity in human retinal pigment epithelial (RPE) cells, thus being promising compounds for further optimization.


Subject(s)
Chagas Disease , Leishmania , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Histone Deacetylase Inhibitors/pharmacology , Schistosoma mansoni
3.
PLoS Negl Trop Dis ; 11(6): e0005480, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28594938

ABSTRACT

The state of antileishmanial chemotherapy is strongly compromised by the emergence of drug-resistant Leishmania. The evolution of drug-resistant phenotypes has been linked to the parasites' intrinsic genome instability, with frequent gene and chromosome amplifications causing fitness gains that are directly selected by environmental factors, including the presence of antileishmanial drugs. Thus, even though the unique eukaryotic biology of Leishmania and its dependence on parasite-specific virulence factors provide valid opportunities for chemotherapeutical intervention, all strategies that target the parasite in a direct fashion are likely prone to select for resistance. Here, we review the current state of antileishmanial chemotherapy and discuss the limitations of ongoing drug discovery efforts. We finally propose new strategies that target Leishmania viability indirectly via mechanisms of host-parasite interaction, including parasite-released ectokinases and host epigenetic regulation, which modulate host cell signaling and transcriptional regulation, respectively, to establish permissive conditions for intracellular Leishmania survival.


Subject(s)
Antiprotozoal Agents/therapeutic use , Drug Discovery/trends , Host-Parasite Interactions/drug effects , Leishmania/pathogenicity , Leishmaniasis/drug therapy , Animals , Drug Resistance , Epigenesis, Genetic , Humans , Leishmania/drug effects , Leishmania/genetics , Macrophages/parasitology , Mice
4.
Int J Parasitol Drugs Drug Resist ; 7(1): 42-50, 2017 04.
Article in English | MEDLINE | ID: mdl-28107750

ABSTRACT

Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC50 9-370 nM), with belinostat, panobinostat and vorinostat having 8-45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF) or human embryonic kidney (HEK 293) cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC50 > 20 µM) or S. mansoni schistosomula (IC50 > 10 µM), however romidepsin inhibited S. mansoni adult worm parings and egg production (IC50 ∼10 µM). Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days), with a significant reduction in parasitemia observed on days 4-7 and 4-10 after infection (P < 0.05), respectively.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Leishmania/drug effects , Plasmodium knowlesi/drug effects , Schistosoma mansoni/drug effects , Acetylation , Administration, Oral , Animals , Depsipeptides/pharmacology , HEK293 Cells , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Indoles/administration & dosage , Indoles/pharmacology , Indoles/therapeutic use , Inhibitory Concentration 50 , Leishmania/growth & development , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/parasitology , Mice , Panobinostat , Parasitemia/drug therapy , Plasmodium berghei/drug effects , Plasmodium knowlesi/growth & development , Schistosoma mansoni/growth & development , Sulfonamides/pharmacology , Vorinostat
SELECTION OF CITATIONS
SEARCH DETAIL