Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Am Soc Nephrol ; 34(4): 706-720, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36753701

ABSTRACT

SIGNIFICANCE STATEMENT: To optimize the diagnosis of genetic kidney disorders in a cost-effective manner, we developed a workflow based on referral criteria for in-person evaluation at a tertiary center, whole-exome sequencing, reverse phenotyping, and multidisciplinary board analysis. This workflow reached a diagnostic rate of 67%, with 48% confirming and 19% modifying the suspected clinical diagnosis. We obtained a genetic diagnosis in 64% of children and 70% of adults. A modeled cost analysis demonstrated that early genetic testing saves 20% of costs per patient. Real cost analysis on a representative sample of 66 patients demonstrated an actual cost reduction of 41%. This workflow demonstrates feasibility, performance, and economic effect for the diagnosis of genetic kidney diseases in a real-world setting. BACKGROUND: Whole-exome sequencing (WES) increases the diagnostic rate of genetic kidney disorders, but accessibility, interpretation of results, and costs limit use in daily practice. METHODS: Univariable analysis of a historical cohort of 392 patients who underwent WES for kidney diseases showed that resistance to treatments, familial history of kidney disease, extrarenal involvement, congenital abnormalities of the kidney and urinary tract and CKD stage ≥G2, two or more cysts per kidney on ultrasound, persistent hyperechoic kidneys or nephrocalcinosis on ultrasound, and persistent metabolic abnormalities were most predictive for genetic diagnosis. We prospectively applied these criteria to select patients in a network of nephrology centers, followed by centralized genetic diagnosis by WES, reverse phenotyping, and multidisciplinary board discussion. RESULTS: We applied this multistep workflow to 476 patients with eight clinical categories (podocytopathies, collagenopathies, CKD of unknown origin, tubulopathies, ciliopathies, congenital anomalies of the kidney and urinary tract, syndromic CKD, metabolic kidney disorders), obtaining genetic diagnosis for 319 of 476 patients (67.0%) (95% in 21 patients with disease onset during the fetal period or at birth, 64% in 298 pediatric patients, and 70% in 156 adult patients). The suspected clinical diagnosis was confirmed in 48% of the 476 patients and modified in 19%. A modeled cost analysis showed that application of this workflow saved 20% of costs per patient when performed at the beginning of the diagnostic process. Real cost analysis of 66 patients randomly selected from all categories showed actual cost reduction of 41%. CONCLUSIONS: A diagnostic workflow for genetic kidney diseases that includes WES is cost-saving, especially if implemented early, and is feasible in a real-world setting.


Subject(s)
Renal Insufficiency, Chronic , Urinary Tract , Adult , Infant, Newborn , Humans , Child , Workflow , Kidney , Genetic Testing , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics
2.
Am J Physiol Cell Physiol ; 325(4): C849-C861, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37642236

ABSTRACT

Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC. Using transgenic mouse models and single-cell RNA sequencing we show that, unlike diploid TC, polyploid TC accumulate DNA damage and survive, eventually resting in the G1 phase of the cell cycle. In vivo and in vitro single-cell RNA sequencing along with sorting of polyploid TC shows that these cells acquire a profibrotic phenotype culminating in transforming growth factor (TGF)-ß1 expression and that TGF-ß1 directly promotes polyploidization. This demonstrates that TC polyploidization is a self-sustained mechanism. Interactome analysis by single-cell RNA sequencing revealed that TGF-ß1 signaling fosters a reciprocal activation loop among polyploid TC, macrophages, and fibroblasts to sustain kidney fibrosis and promote CKD progression. Collectively, this study contributes to the ongoing revision of the paradigm of kidney tubule response to AKI, supporting the existence of a tubulointerstitial cross talk mediated by TGF-ß1 signaling produced by polyploid TC following DNA damage.NEW & NOTEWORTHY Polyploidization in tubular epithelial cells has been neglected until recently. Here, we showed that polyploidization is a self-sustained mechanism that plays an important role during chronic kidney disease development, proving the existence of a cross talk between infiltrating cells and polyploid tubular cells. This study contributes to the ongoing revision of kidney adaptation to injury, posing polyploid tubular cells at the center of the process.


Subject(s)
Acute Kidney Injury , Transforming Growth Factor beta1 , Animals , Mice , Transforming Growth Factor beta1/genetics , Acute Kidney Injury/genetics , Epithelial Cells , Polyploidy , Fibrosis
3.
Nephrol Dial Transplant ; 38(1): 93-105, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36102665

ABSTRACT

BACKGROUND: Cholesterol crystal (CC) embolism causes acute kidney injury (AKI) and ischaemic cortical necrosis associated with high mortality. We speculated that sustaining the fibrinolytic system with Glu-plasminogen (Glu-Plg) could be a safe way to attenuate AKI and prevent ischaemic infarction upon CC embolism. METHODS: We induced CC embolism by injecting CC into the left kidney artery of C57BL/6J mice. The primary endpoint was glomerular filtration rate (GFR). RESULTS: Starting as early as 2 h after CC embolism, thrombotic angiopathy progressed gradually in the interlobular, arcuate and interlobar arteries. This was associated with a decrease of GFR reaching a peak at 18 h, i.e. AKI, and progressive ischaemic kidney necrosis developing between 12-48 h after CC injection. Human plasma Glu-Plg extracts injected intravenously 4 h after CC embolism attenuated thrombotic angiopathy, GFR loss as well as ischaemic necrosis in a dose-dependent manner. No bleeding complications occurred after Glu-Plg injection. Injection of an intermediate dose (0.6 mg/kg) had only a transient protective effect on microvascular occlusions lasting for a few hours without a sustained protective effect on AKI at 18-48 h or cortical necrosis, while 1.5 mg/kg were fully protective. Importantly, no bleeding complications occurred. CONCLUSIONS: These results provide the first experimental evidence that Glu-Plg could be an innovative therapeutic strategy to attenuate thrombotic angiopathy, AKI, kidney necrosis and potentially other clinical manifestations of CC embolism syndrome.


Subject(s)
Acute Kidney Injury , Embolism , Thrombosis , Humans , Mice , Animals , Plasminogen , Mice, Inbred C57BL , Kidney , Infarction , Cholesterol , Necrosis
4.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628451

ABSTRACT

Bartter (BS) and Gitelman (GS) syndrome are autosomal recessive inherited tubulopathies, whose clinical diagnosis can be challenging, due to rarity and phenotypic overlap. Genotype-phenotype correlations have important implications in defining kidney and global outcomes. The aim of our study was to assess the diagnostic rate of whole-exome sequencing (WES) coupled with a bioinformatic analysis of copy number variations in a population of 63 patients with BS and GS from a single institution, and to explore genotype-phenotype correlations. We obtained a diagnostic yield of 86% (54/63 patients), allowing disease reclassification in about 14% of patients. Although some clinical and laboratory features were more commonly reported in patients with BS or GS, a significant overlap does exist, and age at onset, preterm birth, gestational age and nephro-calcinosis are frequently misleading. Finally, chronic kidney disease (CKD) occurs in about 30% of patients with BS or GS, suggesting that the long-term prognosis can be unfavorable. In our cohort the features associated with CKD were lower gestational age at birth and a molecular diagnosis of BS, especially BS type 1. The results of our study demonstrate that WES is useful in dealing with the phenotypic heterogeneity of these disorders, improving differential diagnosis and genotype-phenotype correlation.


Subject(s)
Bartter Syndrome , Gitelman Syndrome , Premature Birth , Renal Insufficiency, Chronic , Bartter Syndrome/diagnosis , Bartter Syndrome/genetics , DNA Copy Number Variations , Female , Gitelman Syndrome/diagnosis , Gitelman Syndrome/genetics , Humans , Infant, Newborn
5.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35887175

ABSTRACT

Oculocutaneous albinism is an autosomal recessive disorder characterized by the presence of typical ocular features, such as foveal hypoplasia, iris translucency, hypopigmented fundus oculi and reduced pigmentation of skin and hair. Albino patients can show significant clinical variability; some individuals can present with only mild depigmentation and subtle ocular changes. Here, we provide a retrospective review of the standardized clinical charts of patients firstly addressed for evaluation of foveal hypoplasia and slightly subnormal visual acuity, whose diagnosis of albinism was achieved only after extensive phenotypic and genotypic characterization. Our report corroborates the pathogenicity of the two common TYR polymorphisms p.(Arg402Gln) and p.(Ser192Tyr) when both are located in trans with a pathogenic TYR variant and aims to expand the phenotypic spectrum of albinism in order to increase the detection rate of the albino phenotype. Our data also suggest that isolated foveal hypoplasia should be considered a clinical sign instead of a definitive diagnosis of an isolated clinical entity, and we recommend deep phenotypic and molecular characterization in such patients to achieve a proper diagnosis.


Subject(s)
Albinism, Oculocutaneous , Albinism , Albinism, Oculocutaneous/diagnosis , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/pathology , Eye Diseases, Hereditary , Fovea Centralis/abnormalities , Humans , Nystagmus, Congenital , Vision Disorders/diagnosis , Visual Acuity
6.
Am J Kidney Dis ; 78(5): 750-754, 2021 11.
Article in English | MEDLINE | ID: mdl-33872687

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a well-characterized monogenic type I interferonopathy presenting with prominent neurologic manifestations. Among extraneurologic features, renal involvement has been described in only 1 patient with an IFIH1 mutation in whom membranous nephropathy developed. The pathogenic role of augmented interferon (IFN) signaling in tissues other than the central nervous system remains to be elucidated. We report a case of collapsing glomerulopathy in a 15-year-old girl affected by AGS with RNASEH2B mutation (an alanine-to-threonine change at amino acid 177), which led to kidney failure. The patient had no lupus-like features and lacked the APOL1 G1 and G2 risk alleles. Kidney biopsy showed findings consistent with collapsing glomerulopathy. MxA, a protein involved in antiviral immunity and induced by type I IFNs, was selectively expressed in CD133-positive parietal epithelial cells (PECs) but not in podocytes that stained for synaptopodin or in other glomerular cells. MxA also colocalized within pseudocrescents with CD44, a marker of PEC activation involved in cellular proliferation, differentiation, and migration and in glomerular scarring. Our findings suggest that collapsing glomerulopathy can be a complication of the type I interferonopathy AGS and that a constitutively enhanced type I IFN response in CD133-positive PECs can drive collapsing glomerulopathy.


Subject(s)
Autoimmune Diseases of the Nervous System , Interferon Type I , Nervous System Malformations , Adolescent , Apolipoprotein L1 , Autoimmune Diseases of the Nervous System/genetics , Female , Humans , Kidney Glomerulus , Nervous System Malformations/genetics
7.
Ophthalmic Genet ; : 1-5, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590032

ABSTRACT

INTRODUCTION: BRPF1 gene on 3p26-p25 encodes a protein involved in epigenetic regulation, through interaction with histone H3 lysine acetyltransferases KAT6A and KAT6B of the MYST family. Heterozygous pathogenic variants in BRPF1 gene are associated with Intellectual Developmental Disorder with Dysmorphic Facies and Ptosis (IDDDFP), characterized by global developmental delay, intellectual disability, language delay, and dysmorphic facial features. The reported ocular involvement includes strabismus, amblyopia, and refraction errors. This report describes a novel ocular finding in patients affected by variants in the BRPF1 gene. METHODS: We performed exome sequencing and deep ocular phenotyping in two unrelated patients (P1, P2) with mild intellectual disability, ptosis, and typical facies. RESULTS: Interestingly, P1 had a Chiari Malformation type I and a subclinical optic neuropathy, which could not be explained by variations in other genes. Having detected a peculiar ocular phenotype in P1, we suggested optical coherence tomography (OCT) for P2; such an exam also detected bilateral subclinical optic neuropathy in this case. DISCUSSION: To date, only a few patients with BRPF1 variants have been described, and none were reported to have optic neuropathy. Since subclinical optic nerve alterations can go easily undetected, our experience highlights the importance of a more detailed ophthalmologic evaluation in patients with BRPF1 variant.

8.
Sci Rep ; 14(1): 15454, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965328

ABSTRACT

Aim of the present study is to evaluate the relationship between genetic and phenotypic data in a series of patients affected by grade I and II of foveal hypoplasia with stable fixation and good visual acuity using multimodal imaging techniques. All patients underwent complete clinical and instrumental assessment including structural Optical Coherence Tomography (OCT), OCT Angiography and Adaptive Optics (AO) imaging. Central macular thickness (CMT), inner nuclear layer (INL), vessel density in superficial capillary plexus were the main variables evaluated with OCT technology. Cone density, cone spacing, cone regularity, cone dispersion and angular density were the parameters evaluated with AO. Genetic evaluation and trio exome sequencing were performed in all affected individuals. Eight patients (3 males and 5 females) with a mean age of 12.62 years (range 8-18) were enrolled. The mean best corrected visual acuity (BCVA) was 0.18 ± 0.13 logMAR, mean CMT was 291.9 ± 16.6 µm and INL was 26.2 ± 4.6 µm. The absence of a foveal avascular zone (FAZ) was documented by examination of OCT-A in seven patients in the superficial capillary plexus. However, there was a partial FAZ in the deep plexus in patients P5 and P8. Of note, all the patients presented with major retinal vessels clearly crossing the foveal center. All individuals exhibited a grade I or II of foveal hypoplasia. In 5 patients molecular analyses showed an extremely mild form of albinism caused by compound heterozygosity of a TYR pathogenic variant and the hypomorphic p.[Ser192Tyr;Arg402Gln] haplotype. One patient had Waardenburg syndrome type 2A caused by a de novo variant in MITF. Two patients had inconclusive molecular analyses. All the patients displayed abnormalities on OCT-A. Photoreceptor count did not differ from normal subjects according to the current literature, but qualitative analysis of AO imaging showed distinctive features likely related to an abnormal pigment distribution in this subset of individuals. In patients with foveal hypoplasia, genetic and multimodal imaging data, including AO findings, can help understand the physiopathology of the foveal hypoplasia phenotype. This study confirms that cone density and visual function can both be preserved despite the absence of a pit.


Subject(s)
Fovea Centralis , Multimodal Imaging , Phenotype , Tomography, Optical Coherence , Visual Acuity , Humans , Male , Child , Female , Adolescent , Tomography, Optical Coherence/methods , Fovea Centralis/abnormalities , Fovea Centralis/pathology , Fovea Centralis/diagnostic imaging , Multimodal Imaging/methods , Fluorescein Angiography/methods , Albinism/genetics
9.
Clin Kidney J ; 15(11): 2006-2019, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325008

ABSTRACT

Podocytopathies are glomerular disorders in which podocyte injury drives proteinuria and progressive kidney disease. They encompass a broad spectrum of aetiologies, resulting in pathological pictures of minimal-changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis or collapsing glomerulopathy. Despite improvement in classifying podocytopathies as a distinct group of disorders, the histological definition fails to capture the relevant biological heterogeneity underlying each case, manifesting as extensive variability in disease progression and response to therapies. Increasing evidence suggests that podocytopathies can result from a single causative factor or a combination of multiple genetic and/or environmental risk factors with different relative contributions, identifying complex physiopathological mechanisms. Consequently, the diagnosis can still be challenging. In recent years, significant advances in genetic, microscopy and biological techniques revolutionized our understanding of the molecular mechanisms underlying podocytopathies, pushing nephrologists to integrate innovative information with more conventional data obtained from kidney biopsy in the diagnostic workflow. In this review, we will summarize current approaches in the diagnosis of podocytopathies, focusing on strategies aimed at elucidating the aetiology underlying the histological picture. We will provide several examples of an integrative view of traditional concepts and new data in patients with suspected podocytopathies, along with a perspective on how a reclassification could help to improve not only diagnostic pathways and therapeutic strategies, but also the management of disease recurrence after kidney transplantation. In the future, the advantages of precision medicine will probably allow diagnostic trajectories to be increasingly focused, maximizing therapeutic results and long-term prognosis.

10.
Sci Transl Med ; 14(657): eabg3277, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35947676

ABSTRACT

Crescentic glomerulonephritis is characterized by vascular necrosis and parietal epithelial cell hyperplasia in the space surrounding the glomerulus, resulting in the formation of crescents. Little is known about the molecular mechanisms driving this process. Inducing crescentic glomerulonephritis in two Pax2Cre reporter mouse models revealed that crescents derive from clonal expansion of single immature parietal epithelial cells. Preemptive and delayed histone deacetylase inhibition with panobinostat, a drug used to treat hematopoietic stem cell disorders, attenuated crescentic glomerulonephritis with recovery of kidney function in the two mouse models. Three-dimensional confocal microscopy and stimulated emission depletion superresolution imaging of mouse glomeruli showed that, in addition to exerting an anti-inflammatory and immunosuppressive effect, panobinostat induced differentiation of an immature hyperplastic parietal epithelial cell subset into podocytes, thereby restoring the glomerular filtration barrier. Single-cell RNA sequencing of human renal progenitor cells in vitro identified an immature stratifin-positive cell subset and revealed that expansion of this stratifin-expressing progenitor cell subset was associated with a poor outcome in human crescentic glomerulonephritis. Treatment of human parietal epithelial cells in vitro with panobinostat attenuated stratifin expression in renal progenitor cells, reduced their proliferation, and promoted their differentiation into podocytes. These results offer mechanistic insights into the formation of glomerular crescents and demonstrate that selective targeting of renal progenitor cells can attenuate crescent formation and the deterioration of kidney function in crescentic glomerulonephritis in mice.


Subject(s)
Glomerulonephritis , Podocytes , Animals , Disease Models, Animal , Glomerulonephritis/drug therapy , Humans , Kidney/metabolism , Mice , Panobinostat/therapeutic use , Podocytes/metabolism , Stem Cells/metabolism
11.
Nat Commun ; 13(1): 5805, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195583

ABSTRACT

Acute kidney injury (AKI) is frequent, often fatal and, for lack of specific therapies, can leave survivors with chronic kidney disease (CKD). We characterize the distribution of tubular cells (TC) undergoing polyploidy along AKI by DNA content analysis and single cell RNA-sequencing. Furthermore, we study the functional roles of polyploidization using transgenic models and drug interventions. We identify YAP1-driven TC polyploidization outside the site of injury as a rapid way to sustain residual kidney function early during AKI. This survival mechanism comes at the cost of senescence of polyploid TC promoting interstitial fibrosis and CKD in AKI survivors. However, targeting TC polyploidization after the early AKI phase can prevent AKI-CKD transition without influencing AKI lethality. Senolytic treatment prevents CKD by blocking repeated TC polyploidization cycles. These results revise the current pathophysiological concept of how the kidney responds to acute injury and identify a novel druggable target to improve prognosis in AKI survivors.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Acute Kidney Injury/metabolism , DNA/metabolism , Disease Progression , Humans , Kidney/metabolism , Polyploidy , RNA/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Senotherapeutics
12.
Clin J Am Soc Nephrol ; 17(1): 143-154, 2022 01.
Article in English | MEDLINE | ID: mdl-34930753

ABSTRACT

Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.


Subject(s)
Autoantigens/genetics , Collagen Type IV/genetics , Genetic Testing/standards , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/genetics , Nephritis, Hereditary/therapy , Humans , Practice Guidelines as Topic
13.
Eur J Hum Genet ; 29(8): 1186-1197, 2021 08.
Article in English | MEDLINE | ID: mdl-33854215

ABSTRACT

The recent Chandos House meeting of the Alport Variant Collaborative extended the indications for screening for pathogenic variants in the COL4A5, COL4A3 and COL4A4 genes beyond the classical Alport phenotype (haematuria, renal failure; family history of haematuria or renal failure) to include persistent proteinuria, steroid-resistant nephrotic syndrome, focal and segmental glomerulosclerosis (FSGS), familial IgA glomerulonephritis and end-stage kidney failure without an obvious cause. The meeting refined the ACMG criteria for variant assessment for the Alport genes (COL4A3-5). It identified 'mutational hotspots' (PM1) in the collagen IV α5, α3 and α4 chains including position 1 Glycine residues in the Gly-X-Y repeats in the intermediate collagenous domains; and Cysteine residues in the carboxy non-collagenous domain (PP3). It considered that 'well-established' functional assays (PS3, BS3) were still mainly research tools but sequencing and minigene assays were commonly used to confirm splicing variants. It was not possible to define the Minor Allele Frequency (MAF) threshold above which variants were considered Benign (BA1, BS1), because of the different modes of inheritances of Alport syndrome, and the occurrence of hypomorphic variants (often Glycine adjacent to a non-collagenous interruption) and local founder effects. Heterozygous COL4A3 and COL4A4 variants were common 'incidental' findings also present in normal reference databases. The recognition and interpretation of hypomorphic variants in the COL4A3-COL4A5 genes remains a challenge.


Subject(s)
Consensus , Genetic Testing/methods , Nephritis, Hereditary/genetics , Practice Guidelines as Topic , Autoantigens/genetics , Collagen Type IV/genetics , Genetic Testing/standards , Humans , Nephritis, Hereditary/diagnosis , Phenotype
14.
Article in English | MEDLINE | ID: mdl-33198123

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) is a clinical picture defined by the lack of response to standard steroid treatment, frequently progressing toward end-stage kidney disease. The genetic basis of SRNS has been thoroughly explored since the end of the 1990s and especially with the advent of next-generation sequencing. Genetic forms represent about 30% of cases of SRNS. However, recent evidence supports the hypothesis that "phenocopies" could account for a non-negligible fraction of SRNS patients who are currently classified as non-genetic, paving the way for a more comprehensive understanding of the genetic background of the disease. The identification of phenocopies is mandatory in order to provide patients with appropriate clinical management and to inform therapy. Extended genetic testing including phenocopy genes, coupled with reverse phenotyping, is recommended for all young patients with SRNS to avoid unnecessary and potentially harmful diagnostic procedures and treatment, and for the reclassification of the disease. The aim of this work is to review the main steps of the evolution of genetic testing in SRNS, demonstrating how a paradigm shifting from "forward" to "reverse" genetics could significantly improve the identification of the molecular mechanisms of the disease, as well as the overall clinical management of affected patients.


Subject(s)
Nephrotic Syndrome , Phenotype , Drug Resistance , Genetic Testing/standards , Humans , Mutation , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Steroids/therapeutic use
15.
G Ital Nefrol ; 37(3)2020 Jun 10.
Article in Italian | MEDLINE | ID: mdl-32530153

ABSTRACT

Thrombotic microangiopathy (TMA) is a frequent and severe complication in systemic lupus erythematosus (SLE). It is reported in almost 20-25% of renal biopsies of patients with lupus nephritis (LN) and is associated with a poor renal prognosis. We report the case of a patient suffering from an aggressive form of proliferative LN in association with thrombotic microangiopathy (TMA-LN), who was resistant to standard combined immunosuppressive treatment with corticosteroids and cyclophosphamide, as well as to plasma exchange (PEX). Eculizumab was given as a rescue therapy with an optimal clinical response. We performed a systematic review of the literature and identified 11 papers, published between 2011 and 2018, with a total of 20 patients, in which eculizumab was used, always as rescue therapy, to treat TMA-LN. All reported cases showed a positive clinical response to eculizumab with a high rate of remission. Even if sparse, available clinical cases and case series support the use of eculizumab in highly selected cases as rescue treatment for LN-TMA resistant to conventional combined immunosuppressive treatment.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Complement Inactivating Agents/therapeutic use , Lupus Nephritis/complications , Salvage Therapy/methods , Thrombotic Microangiopathies/drug therapy , Drug Resistance , Female , Humans , Immunosuppressive Agents/therapeutic use , Kidney/pathology , Lupus Nephritis/pathology , Middle Aged , Plasma Exchange , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/therapy
16.
Clin J Am Soc Nephrol ; 15(1): 89-100, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31831576

ABSTRACT

BACKGROUND AND OBJECTIVES: Nephrotic syndrome is a typical presentation of genetic podocytopathies but occasionally other genetic nephropathies can present as clinically indistinguishable phenocopies. We hypothesized that extended genetic testing followed by reverse phenotyping would increase the diagnostic rate for these patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: All patients diagnosed with nephrotic syndrome and referred to our center between 2000 and 2018 were assessed in this retrospective study. When indicated, whole-exome sequencing and in silico filtering of 298 genes related to CKD were combined with subsequent reverse phenotyping in patients and families. Pathogenic variants were defined according to current guidelines of the American College of Medical Genetics. RESULTS: A total of 111 patients (64 steroid-resistant and 47 steroid-sensitive) were included in the study. Not a single pathogenic variant was detected in the steroid-sensitive group. Overall, 30% (19 out of 64) of steroid-resistant patients had pathogenic variants in podocytopathy genes, whereas a substantial number of variants were identified in other genes, not commonly associated with isolated nephrotic syndrome. Reverse phenotyping, on the basis of a personalized diagnostic workflow, permitted to identify previously unrecognized clinical signs of an unexpected underlying genetic nephropathy in a further 28% (18 out of 64) of patients. These patients showed similar multidrug resistance, but different long-term outcome, when compared with genetic podocytopathies. CONCLUSIONS: Reverse phenotyping increased the diagnostic accuracy in patients referred with the diagnosis of steroid-resistant nephrotic syndrome.


Subject(s)
Exome Sequencing , Genetic Variation , Nephrotic Syndrome/congenital , Biopsy , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , Kidney Function Tests , Kidney Transplantation , Male , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/genetics , Nephrotic Syndrome/surgery , Phenotype , Predictive Value of Tests , Prognosis , Reproducibility of Results , Retrospective Studies , Workflow
17.
Sci Transl Med ; 12(536)2020 03 25.
Article in English | MEDLINE | ID: mdl-32213630

ABSTRACT

Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.


Subject(s)
Acute Kidney Injury , Adenoma , Carcinoma, Renal Cell , Kidney Neoplasms , Adenoma/genetics , Animals , Biomarkers, Tumor , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Mice , Neoplasm Recurrence, Local , Stem Cells
18.
Mol Clin Oncol ; 10(3): 331-338, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30847170

ABSTRACT

MicroRNAs (miRNAs/miRs) are a novel class of gene regulators that may be involved in tumor chemoresistance. Recently, specific miRNA expression profiles have been identified in adult glioblastoma (aGBM), but there are only limited data available on the role of miRNAs in pediatric GBM (pGBM). In the present study, the expression profile of miRNAs was examined in seven pGBMs and three human GBM cell lines (U87MG, A172 and T98G), compared with a non-tumoral pool of pediatric cerebral cortex samples by microarray analysis. A set of differentially expressed miRNAs was identified, including miR-490, miR-876-3p, miR-876-5p, miR-448 and miR-137 (downregulated), as well as miR-501-3p (upregulated). Through bioinformatics analysis, a series of target genes was predicted. In addition, similar gene expression patterns in pGBMs and cell lines was confirmed. Of note, drug resistant T98G cells had upregulated nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) expression, a protein overexpressed in many tumors that serves an important role in cell proliferation and progression. On the basis of the present preliminary report, it could be intriguing to further investigate the relationship between each of the identified differentially expressed miRNAs and NUCKS1, in order to clarify their involvement in the multi-drug resistance mechanism of pGBMs.

SELECTION OF CITATIONS
SEARCH DETAIL