Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Ecotoxicol Environ Saf ; 107: 9-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24905691

ABSTRACT

The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.


Subject(s)
Charcoal/chemistry , Biomass , Charcoal/toxicity , Edetic Acid/chemistry , Forestry , Metals/isolation & purification , Pinus , Plastics , Risk Assessment , Waste Products
2.
Waste Manag ; 174: 451-461, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113670

ABSTRACT

Two samples of spent tire rubber (rubber A and rubber B) were submitted to thermochemical conversion by pyrolysis process. A450, B450 and A900, B900 chars were obtained from rubber A and rubber B at 450 °C and 900 °C, respectively. The chars were then applied as recovery agents of Nd3+ and Dy3+ from aqueous solutions in mono and bicomponent solutions, and their performance was benchmarked with a commercial activated carbon. The chars obtained at 900 °C were the most efficient adsorbents for both elements with uptake capacities around 30 mg g-1. The chars obtained at 450 °C presented uptake capacities similar to the commercial carbon (≈ 11 mg g-1). A900 and B900 chars presented a higher availability of Zn ions that favored the ion exchange mechanism. It was found that Nd3+ and Dy3+ were adsorbed as oxides after Zn was released from silicate structures (Zn2SiO4). A900 char was further selected to be tested with Nd/Dy binary mixtures and it was found a trend to adsorb a slightly higher amount of Dy3+ due to its smaller ionic radius. The uptake capacity in bicomponent solutions was generally higher than for single component solutions due to the higher driving force triggered by the higher concentration gradient.


Subject(s)
Metals, Rare Earth , Rubber , Rubber/chemistry , Charcoal/chemistry , Water , Adsorption
3.
Water Sci Technol ; 68(9): 2019-27, 2013.
Article in English | MEDLINE | ID: mdl-24225103

ABSTRACT

Removal batch assays of phosphates from a synthetic wastewater (SWW) and a pulp and paper mill wastewater (PPWW) with two forestry biomass ashes were performed. The supernatants were not only chemically characterized but also the ecotoxicity was determined using two organisms: Vibrio fischeri and Artemia franciscana. The addition of fly ash and bottom ash to the SWW in solid/liquid (S/L) ratios of 3.35 and 9.05 g L(-1), respectively, achieved removal percentages of phosphates >97% for both ashes. The addition of fly ash and bottom ash to the PPWW in S/L ratios of 34.45 and 46.59 g L(-1), respectively, yield removal percentages of phosphates >90% for both ashes. According to the results of the Langmuir and Freundlich isotherms, the removal of phosphates from the SWW was mainly explained by surface removal mechanisms, while the removal from the PPWW was partially explained by multi-layer mechanisms. The supernatants resulting from the treatment of SWW and PPWW with both biomass ashes did not present acute ecotoxicity.


Subject(s)
Coal Ash/toxicity , Phosphates/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Aliivibrio fischeri/drug effects , Animals , Artemia/drug effects , Book Industry , Coal Ash/metabolism , Forestry , Paper , Phosphates/chemistry , Wastewater/analysis , Water Pollutants, Chemical/chemistry
4.
Bioresour Technol ; 266: 139-150, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29960244

ABSTRACT

Blends of rice waste streams were submitted to co-gasification assays. The resulting chars (G1C and G2C) were characterized and used in Cr(III) removal assays from a synthetic solution. A Commercial Activated Carbon (CAC) was used for comparison purposes. The chars were non-porous materials mainly composed by ashes (68.3-92.6% w/w). The influences of adsorbent loading (solid/liquid ratio - S/L) and initial pH in Cr(III) removal were tested. G2C at a S/L of 5 mg L-1 and an initial pH of 4.50 presented an uptake capacity significantly higher than CAC (7.29 and 2.59 mg g-1, respectively). G2C was used in Cr(III) removal assays from an industrial wastewater with Cr(III) concentrations of 50, 100 and 200 mg L-1. Cr(III) removal by precipitation (uptake capacity ranging from 11.1 to 14.9 mg g-1) was more effective in G2C, while adsorption (uptake capacity of 16.1 mg g-1) was the main removal mechanism in CAC.


Subject(s)
Chromium/isolation & purification , Oryza , Wastewater , Water Pollutants, Chemical/isolation & purification , Adsorption , Charcoal , Hydrogen-Ion Concentration , Industrial Waste
5.
J Hazard Mater ; 147(1-2): 175-83, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17261348

ABSTRACT

In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.


Subject(s)
Carbon/analysis , Environmental Monitoring/methods , Metals/analysis , Particulate Matter/analysis , Research , Sewage/chemistry , Aliivibrio fischeri , Animals , Carbon/toxicity , Coal Ash , Daphnia , France , Government Regulation , Metals/toxicity , Particulate Matter/toxicity , Portugal
6.
Waste Manag ; 65: 186-194, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28400156

ABSTRACT

Rice straw (RS), rice husk (RH) and polyethylene (PE) were blended and submitted to gasification and pyrolysis processes. The chars obtained were submitted to textural, chemical, and ecotoxic characterisations, towards their possible valorisation. Gasification chars were mainly composed of ashes (73.4-89.8wt%), while pyrolysis chars were mainly composed of carbon (53.0-57.6wt%). Silicon (Si) was the major mineral element in all chars followed by alkaline and alkaline-earth metal species (AAEMs). In the pyrolysis chars, titanium (Ti) was also a major element, as the feedstock blends contained high fractions of PE which was the main source of Ti. Gasification chars showed higher surface areas (26.9-62.9m2g-1) and some microporosity, attributed to porous silica. On the contrary, pyrolysis chars did not present a porous matrix, mainly due to their high volatile matter content. The gasification bed char produced with 100% RH, at 850°C, with O2 as gasification agent, was selected for further characterization. This char presented the higher potential to be valorised as adsorbent material (higher surface area, higher content of metal cations with exchangeable capacity, and lowest concentrations of toxic heavy metals). The char was submitted to an aqueous leaching test to assess the mobility of chemical species and the ecotoxic level for V. fischeri. It was observed that metallic elements were significantly retained in the char, which was attributed mainly to its alkaline character. This alkaline condition promoted some ecotoxicity level on the char eluate that was eliminated after the pH correction.


Subject(s)
Biomass , Oryza , Carbon , Carbon Dioxide , Charcoal , Refuse Disposal
7.
J Hazard Mater ; 321: 173-182, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27619963

ABSTRACT

The present work aims to assess the efficiency of chars, obtained from the gasification and co-pyrolysis of rice wastes, as adsorbents of Cr3+ from aqueous solution. GC and PC chars, produced in the gasification and co-pyrolysis, respectively, of rice husk and polyethylene were studied. Cr3+ removal assays were optimised for the initial pH value, adsorbent mass, contact time and Cr3+ initial concentration. GC showed a better performance than PC with about 100% Cr3+ removal, due to the pH increase that caused Cr precipitation. Under pH conditions in which the adsorption prevailed (pH<5.5), GC presented the highest uptake capacity (21.1mg Cr3+ g-1 char) for the following initial conditions: 50mg Cr3+ L-1; pH 5; contact time: 24h;L/S ratio: 1000mLg-1. The pseudo-second order kinetic model showed the best adjustment to GC experimental data. Both the first and second order kinetic models fitted well to PC experimental data. The ion exchange was the dominant phenomenon on the Cr3+ adsorption by GC sample. Also, this char significantly reduced the ecotoxicity of Cr3+ solutions for the bacterium Vibrio fischeri. GC char proved to be an efficient material to remove Cr3+ from aqueous solution, without the need for further activation.


Subject(s)
Charcoal/chemistry , Chromium/isolation & purification , Oryza/chemistry , Refuse Disposal/methods , Water Pollutants, Chemical/isolation & purification , Adsorption , Biomass , Polyethylene/chemistry
8.
Waste Manag ; 22(3): 335-42, 2002.
Article in English | MEDLINE | ID: mdl-11952180

ABSTRACT

Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.


Subject(s)
Refuse Disposal , Soil Pollutants/analysis , Chemical Phenomena , Chemistry, Physical , Ecology , Eukaryota , Incineration , Lactuca , Photobacterium , Risk Assessment , Toxicity Tests
9.
Waste Manag ; 23(9): 859-70, 2003.
Article in English | MEDLINE | ID: mdl-14583249

ABSTRACT

Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.


Subject(s)
Metals, Heavy/analysis , Refuse Disposal/methods , Sewage/chemistry , Coal , Environmental Monitoring , Incineration , Temperature
10.
Waste Manag ; 22(6): 583-93, 2002.
Article in English | MEDLINE | ID: mdl-12214969

ABSTRACT

In this paper, chemical and ecotoxicological data of leachates from bottom ashes collected in different Municipal Solid Waste Incinerators (MSWI) are shown. The bottom ashes were collected in Belgium (three incinerators--samples B1 to B3), France, Germany, Italy and United Kingdom (one incinerator in each country--samples F1, D1, I1 and UK1, respectively). Both chemical and ecotoxicological characterizations of leachates were done on the framework of the European Directive 91/689/EEC and the European Council Decision 94/904/EC. This work was carried out under the European project called Valomat, which was supported by the European Commission through Brite-Euram III program. Twenty-one inorganic parameters were analyzed. The ecotoxicological assays were done under standard laboratory conditions, using the bacterium Photobacterium phosphoreum, the freshwater alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the vegetable Lactuca sativa. Chemical data varied from sample to sample. Similar results were obtained in biological assays. The samples can be classified as ecotoxic/hazardous according to the French proposal for a Criterion and Evaluation Methods of Waste Ecotoxicity (CEMWE) and the German regulation on Hazardous Waste Classification (HWC). However, samples B1, B2, B3 and D1 comply the maximum limits for direct valorization category defined in the French Classification of Bottom Ashes based on their Polluting Potential (CBAPP). Sample B1 presented the lowest level of ecotoxicity, being considered as the most interesting to be used in the development of new materials for civil engineering works.


Subject(s)
Incineration , Soil Pollutants/toxicity , Animals , Asteraceae/drug effects , Daphnia/drug effects , Eukaryota/drug effects , Europe , Humans , Industrial Waste , Photobacterium/drug effects , Risk Assessment , Toxicity Tests , Waste Management/methods
11.
J Hazard Mater ; 219-220: 196-202, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22520075

ABSTRACT

The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents' precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63-81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64-86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59-22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon.


Subject(s)
Hot Temperature , Waste Management/methods , Adsorption , Biomass
12.
J Hazard Mater ; 207-208: 28-35, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-21899951

ABSTRACT

The present work is devoted to the study of the decontamination of chars obtained in the co-pyrolysis of plastics, biomass and tyre wastes. The chars were extracted with several organic solvents of different polarities either individually or in sequence. The ability of each selected extractant to remove toxic pollutants was evaluated by comparing the extraction yields and by characterizing the crude extracts with a combination of chemical analysis and toxicity bioassays. Also, the mineral composition of the treated and non-treated chars was assessed. The results obtained in this study indicate that hexane is the more efficient extraction solvent to be used in the organic decontamination of chars obtained in the co-pyrolysis of plastics, tyres and biomass. A sequential extraction with solvents of increasing polarity can provide a better decontamination of the raw pyrolysis char than any individual extraction. The compounds removed from the char during the decontamination process are mainly aliphatic hydrocarbons and aromatic hydrocarbons, therefore a material that may be upgraded to be used as a fuel and/or as raw material for the organic chemical industry.


Subject(s)
Incineration , Industrial Waste , Biological Assay , Biomass , Gas Chromatography-Mass Spectrometry , Waste Management
13.
Chemosphere ; 79(11): 1026-32, 2010 May.
Article in English | MEDLINE | ID: mdl-20416925

ABSTRACT

Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of 11 alkylphenols in eluates of chars produced in the co-pyrolysis of different wastes. The optimized DLLME procedure, 4 mL of sample solution, 15 microL of trichloroethylene as extraction solvent, 1 mL of acetone as dispersion solvent and addition of 15% (w/v) of NaCl, was validated. Under the optimum conditions, the enrichment factors were in the range of 82-180. Calibration curves were constructed for each analyte in pure water in the concentration range of 0.5-8 microg/L with correlation coefficients higher than 0.999. The limits of detection were between 0.07 and 0.17 microg/L. The repeatability of the method was evaluated using water samples fortified with the analyte mixture at two concentration levels: the relative standard deviation (RSD) values were between 3.7% and 8.0% for a concentration of 0.5 microg/L, and between 4.2% and 6.4% for a concentration of 3 microg/L. The recoveries of the analytes evaluated by fortification of real eluate samples were in the range of 67.9-97.9% for eluate 1 (obtained from a decontaminated char) and in the range of 61.9-101.4% for eluate 2 (obtained from the untreated char). o-Methylphenol presented low recoveries for both eluates showing a possible matrix effect. The results obtained show that this method is adequate for the determination of alkylphenols in environmental aqueous samples and presents itself as a fast and inexpensive technique, using minor amounts of organic solvents.


Subject(s)
Environmental Pollutants/analysis , Phenol/analysis , Chemical Fractionation , Environmental Pollutants/chemistry , Environmental Pollutants/isolation & purification , Gas Chromatography-Mass Spectrometry , Phenol/chemistry , Phenol/isolation & purification , Reproducibility of Results , Sodium Chloride/chemistry , Solvents/chemistry
14.
Waste Manag ; 30(4): 628-35, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19932606

ABSTRACT

Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars. The chars were subjected to the leaching test ISO/TS 21268 - 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE). The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars. Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.


Subject(s)
Aliivibrio fischeri/drug effects , Ecotoxicology/methods , Hot Temperature , Incineration , Refuse Disposal , Waste Products/adverse effects , Waste Products/analysis , Aliivibrio fischeri/growth & development , Aliivibrio fischeri/metabolism , Animals , Biomass , Metals, Heavy/analysis , Metals, Heavy/toxicity , Methylene Chloride/analysis , Methylene Chloride/chemistry , Organic Chemicals/analysis , Organic Chemicals/toxicity , Pinus , Plastics , Rubber , Toxicity Tests
15.
Talanta ; 80(1): 104-8, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19782198

ABSTRACT

A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid-liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor. HS sampling coupled with GC-MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66-37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8-13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6-113.9%. The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations. The DLLME technique coupled with GC-MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hydrocarbons, Aromatic/analysis , Benzene/analysis , Benzene/isolation & purification , Benzene Derivatives/analysis , Benzene Derivatives/isolation & purification , Calibration , Gas Chromatography-Mass Spectrometry/instrumentation , Hydrocarbons, Aromatic/isolation & purification , Reproducibility of Results , Solid Phase Microextraction , Toluene/analysis , Toluene/isolation & purification , Xylenes/analysis , Xylenes/isolation & purification
16.
J Hazard Mater ; 166(1): 309-17, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19118946

ABSTRACT

A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 degrees C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC(50) (30 min) >or=10%), but it was considered to be ecotoxic by the chemical criterion (Ni>or=0.5mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC(50) (30 min)

Subject(s)
Ecotoxicology/methods , Pinus/toxicity , Plastics/toxicity , Refuse Disposal/methods , Aliivibrio fischeri , Biomass , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Gas Chromatography-Mass Spectrometry , Hazardous Waste/analysis , Hot Temperature , Metals, Heavy/analysis , Organic Chemicals/analysis , Pinus/chemistry , Plastics/chemistry , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL