Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Breast Cancer Res ; 26(1): 6, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195559

ABSTRACT

BACKGROUND: Reports of dual carriers of pathogenic BRCA1 variants in trans are extremely rare, and so far, most individuals have been associated with a Fanconi Anemia-like phenotype. METHODS: We identified two families with a BRCA1 in-frame exon 20 duplication (Ex20dup). In one male individual, the variant was in trans with the BRCA1 frameshift variant c.2475delC p.(Asp825Glufs*21). We performed splicing analysis and used a transcription activation domain (TAD) assay to assess the functional impact of Ex20dup. We collected pedigrees and mapped the breakpoints of the duplication by long- and short-read genome sequencing. In addition, we performed a mitomycin C (MMC) assay from the dual carrier using cultured lymphoblastoid cells. RESULTS: Genome sequencing and RNA analysis revealed the BRCA1 exon 20 duplication to be in tandem. The duplication was expressed without skipping any one of the two exon 20 copies, resulting in a lack of wild-type transcripts from this allele. TAD assay indicated that the Ex20dup variant has a functional level similar to the well-known moderate penetrant pathogenic BRCA1 variant c.5096G > A p.(Arg1699Gln). MMC assay of the dual carrier indicated a slightly impaired chromosomal repair ability. CONCLUSIONS: This is the first reported case where two BRCA1 variants with demonstrated functional impact are identified in trans in a male patient with an apparently normal clinical phenotype and no BRCA1-associated cancer. The results pinpoint a minimum necessary BRCA1 protein activity to avoid a Fanconi Anemia-like phenotype in compound heterozygous status and yet still predispose carriers to hormone-related cancers. These findings urge caution when counseling families regarding potential Fanconi Anemia risk. Furthermore, prudence should be taken when classifying individual variants as benign based on co-occurrence in trans with well-established pathogenic variants.


Subject(s)
Breast Neoplasms , Fanconi Anemia , Humans , Male , BRCA1 Protein/genetics , Exons/genetics , Fanconi Anemia/genetics , Mitomycin , Phenotype
2.
Breast Cancer Res ; 25(1): 69, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316882

ABSTRACT

BACKGROUND: Familial breast cancer is in most cases unexplained due to the lack of identifiable pathogenic variants in the BRCA1 and BRCA2 genes. The somatic mutational landscape and in particular the extent of BRCA-like tumour features (BRCAness) in these familial breast cancers where germline BRCA1 or BRCA2 mutations have not been identified is to a large extent unknown. METHODS: We performed whole-genome sequencing on matched tumour and normal samples from high-risk non-BRCA1/BRCA2 breast cancer families to understand the germline and somatic mutational landscape and mutational signatures. We measured BRCAness using HRDetect. As a comparator, we also analysed samples from BRCA1 and BRCA2 germline mutation carriers. RESULTS: We noted for non-BRCA1/BRCA2 tumours, only a small proportion displayed high HRDetect scores and were characterized by concomitant promoter hypermethylation or in one case a RAD51D splice variant previously reported as having unknown significance to potentially explain their BRCAness. Another small proportion showed no features of BRCAness but had mutationally active tumours. The remaining tumours lacked features of BRCAness and were mutationally quiescent. CONCLUSIONS: A limited fraction of high-risk familial non-BRCA1/BRCA2 breast cancer patients is expected to benefit from treatment strategies against homologue repair deficient cancer cells.


Subject(s)
Breast Neoplasms , Genes, BRCA2 , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Prevalence , Mutation , BRCA2 Protein/genetics
3.
Am J Hum Genet ; 106(5): 623-631, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32275884

ABSTRACT

Nucleoporins (NUPs) are an essential component of the nuclear-pore complex, which regulates nucleocytoplasmic transport of macromolecules. Pathogenic variants in NUP genes have been linked to several inherited human diseases, including a number with progressive neurological degeneration. We present six affected individuals with bi-allelic truncating variants in NUP188 and strikingly similar phenotypes and clinical courses, representing a recognizable genetic syndrome; the individuals are from four unrelated families. Key clinical features include congenital cataracts, hypotonia, prenatal-onset ventriculomegaly, white-matter abnormalities, hypoplastic corpus callosum, congenital heart defects, and central hypoventilation. Characteristic dysmorphic features include small palpebral fissures, a wide nasal bridge and nose, micrognathia, and digital anomalies. All affected individuals died as a result of respiratory failure, and five of them died within the first year of life. Nuclear import of proteins was decreased in affected individuals' fibroblasts, supporting a possible disease mechanism. CRISPR-mediated knockout of NUP188 in Drosophila revealed motor deficits and seizure susceptibility, partially recapitulating the neurological phenotype seen in affected individuals. Removal of NUP188 also resulted in aberrant dendrite tiling, suggesting a potential role of NUP188 in dendritic development. Two of the NUP188 pathogenic variants are enriched in the Ashkenazi Jewish population in gnomAD, a finding we confirmed with a separate targeted population screen of an international sampling of 3,225 healthy Ashkenazi Jewish individuals. Taken together, our results implicate bi-allelic loss-of-function NUP188 variants in a recessive syndrome characterized by a distinct neurologic, ophthalmologic, and facial phenotype.


Subject(s)
Alleles , Brain/abnormalities , Drosophila Proteins/genetics , Eye Abnormalities/genetics , Heart Defects, Congenital/genetics , Loss of Function Mutation/genetics , Nuclear Pore Complex Proteins/genetics , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Child, Preschool , Dendrites/metabolism , Dendrites/pathology , Drosophila melanogaster , Eye Abnormalities/mortality , Female , Fibroblasts , Genes, Recessive , Heart Defects, Congenital/mortality , Humans , Infant , Infant, Newborn , Jews/genetics , Male , Nuclear Pore Complex Proteins/deficiency , Seizures/metabolism , Syndrome , beta Karyopherins/metabolism
4.
Pediatr Nephrol ; 37(11): 2657-2665, 2022 11.
Article in English | MEDLINE | ID: mdl-35211789

ABSTRACT

BACKGROUND: Autosomal recessive polycystic kidney disease is a cystic kidney disease with early onset and clinically characterized by enlarged echogenic kidneys, hypertension, varying degrees of kidney dysfunction, and liver fibrosis. It is most frequently caused by sequence variants in the PKHD1 gene, encoding fibrocystin. In more rare cases, sequence variants in DZIP1L are seen, encoding the basal body protein DAZ interacting protein 1-like protein (DZIP1L). So far, only four different DZIP1L variants have been reported. METHODS: Four children from three consanguineous families presenting with polycystic kidney disease were selected for targeted or untargeted exome sequencing. RESULTS: We identified two different, previously not reported homozygous DZIP1L sequence variants: c.193 T > C; p.(Cys65Arg), and c.216C > G; p.(Cys72Trp). Functional analyses of the c.216C > G; p.(Cys72Trp) variant indicated mislocalization of mutant DZIP1L. CONCLUSIONS: In line with published data, our results suggest a critical role of the N-terminal domain for proper protein function. Although patients with PKHD1-associated autosomal recessive polycystic kidney disease often have liver abnormalities, none of the present four patients showed any clinically relevant liver involvement. Our data demonstrate the power and efficiency of next-generation sequencing-based approaches. While DZIP1L-related polycystic kidney disease certainly represents a rare form of the disease, our results emphasize the importance of including DZIP1L in multigene panels and in the data analysis of whole-exome sequencing for cystic kidney diseases. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Adaptor Proteins, Signal Transducing , Polycystic Kidney, Autosomal Recessive , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/genetics , Child , Consanguinity , Genetic Testing/methods , Humans , Mutation , Polycystic Kidney, Autosomal Recessive/diagnosis , Polycystic Kidney, Autosomal Recessive/genetics , Receptors, Cell Surface/genetics , Exome Sequencing
6.
Genet Med ; 23(6): 1028-1040, 2021 06.
Article in English | MEDLINE | ID: mdl-33658631

ABSTRACT

PURPOSE: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. METHODS: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. RESULTS: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. CONCLUSION: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Humans , Intellectual Disability/genetics , Regulatory Factor X Transcription Factors , Transcription Factors/genetics
7.
Clin Genet ; 100(5): 607-614, 2021 11.
Article in English | MEDLINE | ID: mdl-34296759

ABSTRACT

Early infantile epileptic encephalopathy 38 (EIEE38, MIM #617020) is caused by biallelic variants in ARV1, encoding a transmembrane protein of the endoplasmic reticulum with a pivotal role in glycosylphosphatidylinositol (GPI) biosynthesis. We ascertained seven new patients from six unrelated families harboring biallelic variants in ARV1, including five novel variants. Affected individuals showed psychomotor delay, hypotonia, early onset refractory seizures followed by regression and specific neuroimaging features. Flow cytometric analysis on patient fibroblasts showed a decrease in GPI-anchored proteins on the cell surface, supporting a lower residual activity of the mutant ARV1 as compared to the wildtype. A rescue assay through the transduction of lentivirus expressing wild type ARV1 cDNA effectively rescued these alterations. This study expands the clinical and molecular spectrum of the ARV1-related encephalopathy, confirming the essential role of ARV1 in GPI biosynthesis and brain function.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Membrane Proteins/deficiency , Phenotype , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Alleles , Amino Acid Substitution , Brain/abnormalities , Carrier Proteins/genetics , DNA Mutational Analysis , Facies , Female , GPI-Linked Proteins/biosynthesis , Genetic Association Studies/methods , Glycosylphosphatidylinositols/metabolism , Humans , Magnetic Resonance Imaging , Male , Membrane Proteins/genetics , Mutation , Pedigree , Pregnancy , Prenatal Diagnosis/methods , Spasms, Infantile/metabolism
8.
Brain ; 143(1): 94-111, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31855247

ABSTRACT

Cerebral choline metabolism is crucial for normal brain function, and its homoeostasis depends on carrier-mediated transport. Here, we report on four individuals from three families with neurodegenerative disease and homozygous frameshift mutations (Asp517Metfs*19, Ser126Metfs*8, and Lys90Metfs*18) in the SLC44A1 gene encoding choline transporter-like protein 1. Clinical features included progressive ataxia, tremor, cognitive decline, dysphagia, optic atrophy, dysarthria, as well as urinary and bowel incontinence. Brain MRI demonstrated cerebellar atrophy and leukoencephalopathy. Moreover, low signal intensity in globus pallidus with hyperintensive streaking and low signal intensity in substantia nigra were seen in two individuals. The Asp517Metfs*19 and Ser126Metfs*8 fibroblasts were structurally and functionally indistinguishable. The most prominent ultrastructural changes of the mutant fibroblasts were reduced presence of free ribosomes, the appearance of elongated endoplasmic reticulum and strikingly increased number of mitochondria and small vesicles. When chronically treated with choline, those characteristics disappeared and mutant ultrastructure resembled healthy control cells. Functional analysis revealed diminished choline transport yet the membrane phosphatidylcholine content remained unchanged. As part of the mechanism to preserve choline and phosphatidylcholine, choline transporter deficiency was implicated in impaired membrane homeostasis of other phospholipids. Choline treatments could restore the membrane lipids, repair cellular organelles and protect mutant cells from acute iron overload. In conclusion, we describe a novel childhood-onset neurometabolic disease caused by choline transporter deficiency with autosomal recessive inheritance.


Subject(s)
Antigens, CD/genetics , Heredodegenerative Disorders, Nervous System/genetics , Organic Cation Transport Proteins/genetics , Adolescent , Ataxia/genetics , Ataxia/physiopathology , Atrophy , Cerebellum/diagnostic imaging , Cerebellum/pathology , Choline/pharmacology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cytoplasmic Vesicles/drug effects , Cytoplasmic Vesicles/ultrastructure , Deglutition Disorders/genetics , Deglutition Disorders/physiopathology , Dysarthria/genetics , Dysarthria/physiopathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Fecal Incontinence/genetics , Fecal Incontinence/physiopathology , Female , Fibroblasts/drug effects , Fibroblasts/ultrastructure , Frameshift Mutation , Globus Pallidus/diagnostic imaging , Heredodegenerative Disorders, Nervous System/diagnostic imaging , Heredodegenerative Disorders, Nervous System/pathology , Heredodegenerative Disorders, Nervous System/physiopathology , Homozygote , Humans , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Leukoencephalopathies/physiopathology , Magnetic Resonance Imaging , Male , Microscopy, Electron , Mitochondria/drug effects , Mitochondria/ultrastructure , Nootropic Agents/pharmacology , Optic Atrophy/genetics , Optic Atrophy/physiopathology , Pedigree , Ribosomes/drug effects , Ribosomes/ultrastructure , Substantia Nigra/diagnostic imaging , Syndrome , Tremor/genetics , Tremor/physiopathology , Urinary Incontinence/genetics , Urinary Incontinence/physiopathology
9.
Am J Hum Genet ; 101(6): 1013-1020, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29220673

ABSTRACT

Using trio whole-exome sequencing, we have identified de novo heterozygous pathogenic variants in GRIA4 in five unrelated individuals with intellectual disability and other symptoms. GRIA4 encodes an AMPA receptor subunit known as GluR4, which is found on excitatory glutamatergic synapses and is important for learning and memory. Four of the variants are located in the highly conserved SYTANLAAF motif in the transmembrane protein M3, and the fifth is in an extra-cellular domain. Molecular modeling of the altered protein showed that three of the variants in the SYTANLAAF motif orient toward the center of the pore region and most likely lead to disturbance of the gating mechanism. The fourth variant in the SYTANLAAF motif most likely results in reduced permeability. The variant in the extracellular domain potentially interferes with the binding between the monomers. On the basis of clinical information and genetic results, and the fact that other subunits of the AMPA receptor have already been associated with neurodevelopmental disorders, we suggest that pathogenic de novo variants in GRIA4 lead to intellectual disability with or without seizures, gait abnormalities, problems of social behavior, and other variable features.


Subject(s)
Gait Disorders, Neurologic/genetics , Intellectual Disability/genetics , Movement Disorders/genetics , Receptors, AMPA/genetics , Seizures/genetics , Adolescent , Adult , Child, Preschool , Female , Humans , Male , Models, Molecular , Problem Behavior , Social Behavior , Exome Sequencing , Young Adult
10.
Clin Genet ; 95(3): 403-408, 2019 03.
Article in English | MEDLINE | ID: mdl-30417326

ABSTRACT

Rett syndrome is rarely suspected in males because of the X-linked dominant inheritance. In the literature, only six male patients have been reported with methyl-CpG-binding protein 2 (MECP2) mosaicism. Next-generation sequencing (NGS) methods have enabled better detection of somatic mosaicism compared to conventional Sanger sequencing; however, mosaics can still be difficult to detect. We present clinical and molecular findings in two males mosaic for a pathogenic MECP2 variant. Both have been reexamined using deep sequencing of DNA isolated from four different cell tissues (blood, muscle, fibroblasts and oral mucosa). Deep sequencing of the different tissues revealed that the variants were present in all tissues. In one patient, the molecular diagnosis could only be established by reexamination after a normal whole exome sequencing, and the other case is an example of reverse genetic diagnostics. Rett syndrome should be considered in males with neurodevelopmental delay and stereotypical hand movements. Subsequent to clinical diagnosis males should be investigated with NGS-based technologies of MECP2 with high read depth and a low threshold for variant calls. If the initial analysis on full blood derived DNA fails to confirm the suspicion, we recommend repeating the analysis on another tissue, preferentially fibroblasts to increase the diagnostic yield.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Mosaicism , Mutation , Phenotype , Rett Syndrome/diagnosis , Rett Syndrome/genetics , Alleles , Biopsy , Child , Facies , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Male
11.
Neurogenetics ; 19(3): 145-149, 2018 08.
Article in English | MEDLINE | ID: mdl-29754261

ABSTRACT

Mutations in ALDH18A1 can cause autosomal recessive and dominant hereditary spastic paraplegia and autosomal recessive and dominant cutis laxa. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthetase (P5CS), which consists of two domains, the glutamate 5-kinase (G5K) and the gamma-glutamyl phosphate reductase (GR5P) domain. The location of the mutations in the gene has influence on whether the amino acid levels are affected. Mutations affecting the G5K domain have previously been found to cause reduced plasma levels of proline, citrulline and arginine, whereas such effect is not seen with mutations affecting the GR5P domain. We present a 19-year old male patient with autosomal recessive spastic paraplegia and compound heterozygosity for two ALDH18A1 mutations, one in each of the P5CS domains. This young man has spastic paraplegia with onset in childhood and temporal lobe epilepsy, but normal levels of proline, ornithine and arginine. To our knowledge, this is the first case with compound heterozygous mutations affecting both P5CS domains, where levels of plasma amino acids have been reported.


Subject(s)
Aldehyde Dehydrogenase/genetics , Amino Acids/blood , Mutation , Spastic Paraplegia, Hereditary/blood , Spastic Paraplegia, Hereditary/genetics , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Amino Acids/metabolism , Genetic Testing , Heterozygote , Humans , Male , Pedigree , Protein Domains/genetics , Spastic Paraplegia, Hereditary/metabolism , Young Adult
13.
Breast Cancer Res ; 17: 55, 2015 Apr 11.
Article in English | MEDLINE | ID: mdl-25887545

ABSTRACT

INTRODUCTION: Patients with clinically and pathologically similar breast tumors often have very different outcomes and treatment responses. Current prognostic markers allocate the majority of breast cancer patients to the high-risk group, yielding high sensitivities in expense of specificities below 20%, leading to considerable overtreatment, especially in lymph node-negative patients. Seventy percent would be cured by surgery and radiotherapy alone in this group. Thus, precise and early indicators of metastasis are highly desirable to reduce overtreatment. Previous prognostic RNA-profiling studies have only focused on the protein-coding part of the genome, however the human genome contains thousands of long non-coding RNAs (lncRNAs) and this unexplored field possesses large potential for identification of novel prognostic markers. METHODS: We evaluated lncRNA microarray data from 164 primary breast tumors from adjuvant naïve patients with a mean follow-up of 18 years. Eighty two patients who developed detectable distant metastasis were compared to 82 patients where no metastases were diagnosed. For validation, we determined the prognostic value of the lncRNA profiles by comparing the ability of the profiles to predict metastasis in two additional, previously-published, cohorts. RESULTS: We showed that lncRNA profiles could distinguish metastatic patients from non-metastatic patients with sensitivities above 90% and specificities of 64-65%. Furthermore; classifications were independent of traditional prognostic markers and time to metastasis. CONCLUSIONS: To our knowledge, this is the first study investigating the prognostic potential of lncRNA profiles. Our study suggest that lncRNA profiles provide additional prognostic information and may contribute to the identification of early breast cancer patients eligible for adjuvant therapy, as well as early breast cancer patients that could avoid unnecessary systemic adjuvant therapy. This study emphasizes the potential role of lncRNAs in breast cancer prognosis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Biomarkers , Biopsy , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Lymphatic Metastasis , Middle Aged , Neoplasm Grading , Neoplasm Staging , Odds Ratio , Prognosis , Reproducibility of Results , Signal Transduction , Tumor Burden
15.
Cancer Med ; 13(9): e7089, 2024 May.
Article in English | MEDLINE | ID: mdl-38676390

ABSTRACT

BACKGROUND: Current clinical markers overestimate the recurrence risk in many lymph node negative (LNN) breast cancer (BC) patients such that a majority of these low-risk patients unnecessarily receive systemic treatments. We tested if differential microRNA expression in primary tumors allows reliable identification of indolent LNN BC patients to provide an improved classification tool for overtreatment reduction in this patient group. METHODS: We collected freshly frozen primary tumors of 80 LNN BC patients with recurrence and 80 recurrence-free patients (mean follow-up: 20.9 years). The study comprises solely systemically untreated patients to exclude that administered treatments confound the metastasis status. Samples were pairwise matched for clinical-pathological characteristics to minimize dependence of current markers. Patients were classified into risk-subgroups according to the differential microRNA expression of their tumors via classification model building with cross-validation using seven classification methods and a voting scheme. The methodology was validated using available data of two independent cohorts (n = 123, n = 339). RESULTS: Of the 80 indolent patients (who would all likely receive systemic treatments today) our ultralow-risk classifier correctly identified 37 while keeping a sensitivity of 100% in the recurrence group. Multivariable logistic regression analysis confirmed independence of voting results from current clinical markers. Application of the method in two validation cohorts confirmed successful classification of ultralow-risk BC patients with significantly prolonged recurrence-free survival. CONCLUSION: Profiles of differential microRNAs expression can identify LNN BC patients who could spare systemic treatments demanded by currently applied classifications. However, further validation studies are required for clinical implementation of the applied methodology.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , MicroRNAs , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , MicroRNAs/genetics , Middle Aged , Biomarkers, Tumor/genetics , Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Adult , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Risk Assessment/methods , Neoplasm Metastasis , Prognosis
16.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191484

ABSTRACT

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Subject(s)
Ciliopathies , Genes, X-Linked , WD40 Repeats , Animals , Humans , Male , Brain , Ciliopathies/genetics , Cognition , Zebrafish/genetics
17.
Breast Cancer Res Treat ; 142(3): 529-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24258260

ABSTRACT

Expression of HOX transcript antisense intergenic RNA (HOTAIR)--a long non-coding RNA--has been examined in a variety of human cancers, and overexpression of HOTAIR is correlated with poor survival among breast, colon, and liver cancer patients. In this retrospective study, we examine HOTAIR expression in 164 primary breast tumors, from patients who do not receive adjuvant treatment, in a design that is paired with respect to the traditional prognostic markers. We show that HOTAIR expression differs between patients with or without a metastatic endpoint, respectively. Survival analysis shows that high HOTAIR expression in primary tumors is significantly associated with worse prognosis independent of prognostic markers (P = 0.012, hazard ratio (HR) 1.747). This association is even stronger when looking only at estrogen receptor (ER)-positive tumor samples (P = 0.0086, HR 1.985). In ER-negative tumor samples, we are not able to detect a prognostic value of HOTAIR expression, probably due to the limited sample size. These results are successfully validated in an independent dataset with similar associations (P = 0.018, HR 1.825). In conclusion, our findings suggest that HOTAIR expression may serve as an independent biomarker for the prediction of the risk of metastasis in ER-positive breast cancer patients.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , Adult , Aged , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Gene Expression , Humans , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Prognosis , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Reproducibility of Results , Tumor Burden
18.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36976648

ABSTRACT

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Subject(s)
Ceramides , Sphingolipids , Humans , Ceramides/metabolism , Homeostasis , Mutation , Sphingolipids/genetics , Sphingolipids/metabolism
19.
Sci Rep ; 12(1): 902, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042901

ABSTRACT

Shank proteins are major scaffolds of the postsynaptic density of excitatory synapses. Mutations in SHANK genes are associated with autism and intellectual disability. The effects of missense mutations on Shank3 function, and therefore the pathomechanisms are unclear. Several missense mutations in SHANK3 affect the N-terminal region, consisting of the Shank/ProSAP N-terminal (SPN) domain and a set of Ankyrin (Ank) repeats. Here we identify a novel SHANK3 missense mutation (p.L270M) in the Ankyrin repeats in patients with an ADHD-like phenotype. We functionally analysed this and a series of other mutations, using biochemical and biophysical techniques. We observe two major effects: (1) a loss of binding to δ-catenin (e.g. in the p.L270M variant), and (2) interference with the intramolecular interaction between N-terminal SPN domain and the Ank repeats. This also interferes with binding to the α-subunit of the calcium-/calmodulin dependent kinase II (αCaMKII), and appears to be associated with a more severe neurodevelopmental pathology.


Subject(s)
Synapses
20.
Cancers (Basel) ; 13(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638391

ABSTRACT

Several gene expression signatures based on mRNAs and a few based on long non-coding RNAs (lncRNAs) have been developed to provide prognostic information beyond clinical evaluation in breast cancer (BC). However, the comparison of such signatures for predicting recurrence is very scarce. Therefore, we compared the prognostic utility of mRNAs and lncRNAs in low-risk BC patients using two different classification strategies. Frozen primary tumor samples from 160 lymph node negative and systemically untreated BC patients were included; 80 developed recurrence-i.e., regional or distant metastasis while 80 remained recurrence-free (mean follow-up of 20.9 years). Patients were pairwise matched for clinicopathological characteristics. Classification based on differential mRNA or lncRNA expression using seven individual machine learning methods and a voting scheme classified patients into risk-subgroups. Classification by the seven methods with a fixed sensitivity of ≥90% resulted in specificities ranging from 16-40% for mRNA and 38-58% for lncRNA, and after voting, specificities of 38% and 60% respectively. Classifier performance based on an alternative classification approach of balanced accuracy optimization also provided higher specificities for lncRNA than mRNA at comparable sensitivities. Thus, our results suggested that classification followed by voting improved prognostic power using lncRNAs compared to mRNAs regardless of classification strategy.

SELECTION OF CITATIONS
SEARCH DETAIL