Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Cell Mol Life Sci ; 81(1): 323, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080084

ABSTRACT

Autophagy is a highly conserved catabolic mechanism by which unnecessary or dysfunctional cellular components are removed. The dysregulation of autophagy has been implicated in various neurodegenerative diseases, including Alzheimer's disease (AD). Understanding the molecular mechanism(s)/molecules that influence autophagy may provide important insights into developing therapeutic strategies against AD and other neurodegenerative disorders. Engulfment adaptor phosphotyrosine-binding domain-containing protein 1 (GULP1) is an adaptor that interacts with amyloid precursor protein (APP) to promote amyloid-ß peptide production via an unidentified mechanism. Emerging evidence suggests that GULP1 has a role in autophagy. Here, we show that GULP1 is involved in autophagy through an interaction with autophagy-related 14 (ATG14), which is a regulator of autophagosome formation. GULP1 potentiated the stimulatory effect of ATG14 on autophagy by modulating class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1) activity. The effect of GULP1 is attenuated by a GULP1 mutation (GULP1m) that disrupts the GULP1-ATG14 interaction. Conversely, PI3KC3-C1 activity is enhanced in cells expressing APP but not in those expressing an APP mutant that does not bind GULP1, which suggests a role of GULP1-APP in regulating PI3KC3-C1 activity. Notably, GULP1 facilitates the targeting of ATG14 to the endoplasmic reticulum (ER). Moreover, the levels of both ATG14 and APP are elevated in the autophagic vacuoles (AVs) of cells expressing GULP1, but not in those expressing GULP1m. APP processing is markedly enhanced in cells co-expressing GULP1 and ATG14. Hence, GULP1 alters APP processing by promoting the entry of APP into AVs. In summary, we unveil a novel role of GULP1 in enhancing the targeting of ATG14 to the ER to stimulate autophagy and, consequently, APP processing.


Subject(s)
Adaptor Proteins, Signal Transducing , Amyloid beta-Protein Precursor , Autophagy-Related Proteins , Autophagy , Humans , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , HEK293 Cells , Protein Binding , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33947817

ABSTRACT

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Subject(s)
Apoptosis/genetics , DNA Damage , Huntington Disease/genetics , Peptides/genetics , Pyrophosphatases/genetics , RNA/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Apoptosis/drug effects , Benzamidines/metabolism , Benzamidines/pharmacology , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/prevention & control , Mice, Inbred C57BL , Mice, Transgenic , Molecular Dynamics Simulation , Pyrophosphatases/metabolism , RNA/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Biochem Soc Trans ; 51(4): 1647-1659, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37387352

ABSTRACT

Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-ß peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Animals , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurogenesis , Mammals/metabolism
4.
FASEB J ; 36(11): e22594, 2022 11.
Article in English | MEDLINE | ID: mdl-36250347

ABSTRACT

Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration. Insulin is a pivotal hormone in the regulation of glucose homeostasis. There is increasing evidence for the neurotrophic functions of insulin, including the induction of neurite outgrowth. However, the associated mechanism remains elusive. Here, we demonstrate that insulin potentiates neurite outgrowth mediated by the small GTPases ADP-ribosylation factor 6 (ARF6) and Ras-related C3 botulinum toxin substrate 1 (Rac1) through the neuronal adaptor FE65. Moreover, insulin enhances atypical protein kinase Cι/λ (PKCι/λ) activation and FE65 phosphorylation at serine 459 (S459) in neurons and mouse brains. In vitro and cellular assays show that PKCι/λ phosphorylated FE65 at S459. Consistently, insulin potentiates FE65 S459 phosphorylation only in the presence of PKCι/λ. Phosphomimetic studies show that an FE65 S459E mutant potently activates ARF6, Rac1, and neurite outgrowth. Notably, this phosphomimetic mutation enhances the FE65-ARF6 interaction, a process that promotes ARF6-Rac1-mediated neurite outgrowth. Likewise, insulin treatment and PKCι/λ overexpression potentiate the FE65-ARF6 interaction. Conversely, PKCι/λ knockdown suppresses the stimulatory effect of FE65 on ARF6-Rac1-mediated neurite outgrowth. The effect of insulin on neurite outgrowth is also markedly attenuated in PKCι/λ knockdown neurons, in the presence and absence of FE65. Our findings reveal a novel mechanism linking insulin with ARF6-Rac1-dependent neurite extension through the PKCι/λ-mediated phosphorylation of FE65.


Subject(s)
Insulin , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , rac1 GTP-Binding Protein , ADP-Ribosylation Factor 6 , Animals , Glucose/metabolism , Insulin/metabolism , Insulin/pharmacology , Mice , Neurites/metabolism , Neuronal Outgrowth/physiology , Neurons/metabolism , Neuropeptides/metabolism , Phosphorylation , Protein Kinase C/metabolism , Serine/metabolism , rac1 GTP-Binding Protein/metabolism
5.
Mol Biol Evol ; 37(10): 2955-2965, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32521021

ABSTRACT

A striking feature of micro-RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro-RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro-RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro-RNA cluster members were also constructed. Expression of individual micro-RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro-RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro-RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro-RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro-RNAs. Considered together, the micro-RNA targets and the evolutionary ages of each micro-RNA in the cluster demonstrate the importance of micro-RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro-RNAs. Key words: micro-RNA, cluster, evolution.


Subject(s)
Drosophila melanogaster/genetics , Evolution, Molecular , MicroRNAs/genetics , Animals , Base Sequence , Conserved Sequence , Drosophila melanogaster/metabolism , Female , Male , MicroRNAs/metabolism , Multigene Family , Selection, Genetic
6.
FASEB J ; 34(12): 16397-16413, 2020 12.
Article in English | MEDLINE | ID: mdl-33047393

ABSTRACT

Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.


Subject(s)
ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Neuronal Outgrowth/physiology , Neurons/metabolism , Nuclear Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , ADP-Ribosylation Factor 6 , Animals , CHO Cells , COS Cells , Cell Line , Cell Membrane/metabolism , Chlorocebus aethiops , Cricetulus , Endosomes/metabolism , HEK293 Cells , Humans , Protein Transport/physiology , Signal Transduction/physiology
7.
J Biol Chem ; 294(8): 2757-2770, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30593503

ABSTRACT

Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.


Subject(s)
Autophagy , Disease Models, Animal , Furans/pharmacology , Inclusion Bodies/pathology , Neurodegenerative Diseases/prevention & control , Neurons/pathology , Peptides/metabolism , Animals , Cytoprotection , Drosophila melanogaster/physiology , Furans/chemistry , Humans , Inclusion Bodies/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/metabolism , Peptides/chemistry , Rats
8.
J Biol Chem ; 294(1): 372-378, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30409901

ABSTRACT

The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogens such as Mycobacterium tuberculosis However, to date, the only RimP structure available is the NMR structure of the ortholog in another bacterial pathogen, Streptococcus pneumoniae Here, we report a 2.2 Å resolution crystal structure of MSMEG_2624, the RimP ortholog in the close M. tuberculosis relative Mycobacterium smegmatis, and using in vitro binding assays, we show that MSMEG_2624 interacts with the small ribosomal protein S12, also known as RpsL. Further analyses revealed that the conserved residues in the linker region between the N- and C-terminal domains of MSMEG_2624 are essential for binding to RpsL. However, neither of the two domains alone was sufficient to form strong interactions with RpsL. More importantly, the linker region was essential for in vivo ribosomal biogenesis. Our study provides critical mechanistic insights into the role of RimP in ribosome biogenesis. We anticipate that the MSMEG_2624 crystal structure has the potential to be used for drug design to manage M. tuberculosis infections.


Subject(s)
Bacterial Proteins , Mycobacterium smegmatis , Ribosomal Proteins , Ribosomes , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Escherichia coli Proteins , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/metabolism , Protein Binding , Protein Domains , Ribosomal Protein S9 , Ribosomal Proteins/biosynthesis , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Ribosomes/metabolism , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/metabolism
9.
RNA ; 24(4): 486-498, 2018 04.
Article in English | MEDLINE | ID: mdl-29295891

ABSTRACT

Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.


Subject(s)
Huntington Disease/therapy , Peptides/pharmacology , Proteostasis Deficiencies/genetics , Spinocerebellar Ataxias/therapy , Trinucleotide Repeats/genetics , Animals , Cell Death/drug effects , Drosophila/genetics , HEK293 Cells , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Peptides/metabolism , Phosphoproteins/genetics , Protein Folding , Proteostasis Deficiencies/pathology , Proteostasis Deficiencies/therapy , RNA, Ribosomal/genetics , RNA-Binding Proteins/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Transcription, Genetic/genetics , Trinucleotide Repeats/drug effects , Nucleolin
10.
FASEB J ; 33(11): 12019-12035, 2019 11.
Article in English | MEDLINE | ID: mdl-31373844

ABSTRACT

Amyloid-ß (Aß) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aß to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aß generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aß levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aß production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aß. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aß production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aß generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the ß1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aß production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-ß generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Protein Kinase C/metabolism , Protein Processing, Post-Translational , Threonine/metabolism , Alzheimer Disease/metabolism , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , HEK293 Cells , Humans , Phosphorylation , Protein Binding
11.
EMBO Rep ; 19(9)2018 09.
Article in English | MEDLINE | ID: mdl-30026307

ABSTRACT

Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.


Subject(s)
Apoptosis , Cell Polarity/genetics , Cell Polarity/physiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Adult , Aged , Amyloid beta-Peptides/metabolism , Animals , Caspase 3/metabolism , Cytoskeletal Proteins , Disease Models, Animal , Dishevelled Proteins/metabolism , Drosophila , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 1/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Neurodegenerative Diseases/chemically induced , Peptides/pharmacology , Rats , YY1 Transcription Factor/genetics , alpha-Synuclein/metabolism , rac1 GTP-Binding Protein/metabolism , tau Proteins/metabolism
12.
J Neurosci ; 38(37): 8071-8086, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209205

ABSTRACT

The octomeric exocyst complex governs the final step of exocytosis in both plants and animals. Its roles, however, extend beyond exocytosis and include organelle biogenesis, ciliogenesis, cell migration, and cell growth. Exo70 is a conserved component of the exocyst whose function in Drosophila is unclear. In this study, we characterized two mutant alleles of Drosophila exo70. exo70 mutants exhibit reduced synaptic growth, locomotor activity, glutamate receptor density, and mEPSP amplitude. We found that presynaptic Exo70 is necessary for normal synaptic growth at the neuromuscular junction (NMJ). At the neuromuscular junction, exo70 genetically interacts with the small GTPase ralA to regulate synaptic growth. Loss of Exo70 leads to the blockage of JNK signaling-, activity-, and temperature-induced synaptic outgrowths. We showed that this phenotype is associated with an impairment of integral membrane protein transport to the cell surface at synaptic terminals. In octopaminergic motor neurons, Exo70 is detected in synaptic varicosities, as well as the regions of membrane extensions in response to activity stimulation. Strikingly, mild thermal stress causes severe neurite outgrowth defects and pharate adult lethality in exo70 mutants. exo70 mutants also display defective locomotor activity in response to starvation stress. These results demonstrated that Exo70 is an important regulator of induced synaptic growth and is crucial for an organism's adaptation to environmental changes.SIGNIFICANCE STATEMENT The exocyst complex is a conserved protein complex directing secretory vesicles to the site of membrane fusion during exocytosis, which is essential for transporting proteins and membranes to the cell surface. Exo70 is a subunit of the exocyst complex whose roles in neurons remain elusive, and its function in Drosophila is unclear. In Drosophila, Exo70 is expressed in both glutamatergic and octopaminergic neurons, and presynaptic Exo70 regulates synaptic outgrowth. Moreover, exo70 mutants have impaired integral membrane transport to the cell surface at synaptic terminals and block several kinds of induced synaptic growth. Remarkably, elevated temperature causes severe arborization defects and lethality in exo70 mutants, thus underpinning the importance of Exo70 functions in development and adaptation to the environment.


Subject(s)
Cell Survival/genetics , Drosophila Proteins/metabolism , Exocytosis/physiology , Hot Temperature , Neuronal Outgrowth/genetics , Stress, Physiological/genetics , Vesicular Transport Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Membrane/metabolism , Drosophila , Drosophila Proteins/genetics , Neurites/metabolism , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Neurons/metabolism , Vesicular Transport Proteins/genetics
13.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29615491

ABSTRACT

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis , Neuronal Outgrowth/physiology , Neurons/cytology , Nuclear Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Movement , Cells, Cultured , Humans , Nerve Tissue Proteins/genetics , Neurons/metabolism , Nuclear Proteins/genetics , Rats , rac1 GTP-Binding Protein/genetics
14.
J Biol Chem ; 293(36): 13961-13973, 2018 09 07.
Article in English | MEDLINE | ID: mdl-29991595

ABSTRACT

Bacterial flagella are rotary nanomachines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation is exemplified by the motor-switch apparatus of the gastric pathogen Helicobacter pylori, which carries an extra switch protein, FliY, along with the more typical FliG, FliM, and FliN proteins. All switch proteins are needed for normal flagellation and motility in H. pylori, but the molecular mechanism of their assembly is unknown. To fill this gap, we examined the interactions among these proteins. We found that the C-terminal SpoA domain of FliY (FliYC) is critical to flagellation and forms heterodimeric complexes with the FliN and FliM SpoA domains, which are ß-sheet domains of type III secretion system proteins. Surprisingly, unlike in other flagellar switch systems, neither FliY nor FliN self-associated. The crystal structure of the FliYC-FliNC complex revealed a saddle-shaped structure homologous to the FliN-FliN dimer of Thermotoga maritima, consistent with a FliY-FliN heterodimer forming the functional unit. Analysis of the FliYC-FliNC interface indicated that oppositely charged residues specific to each protein drive heterodimer formation. Moreover, both FliYC-FliMC and FliYC-FliNC associated with the flagellar regulatory protein FliH, explaining their important roles in flagellation. We conclude that H. pylori uses a FliY-FliN heterodimer instead of a homodimer and creates a switch complex with SpoA domains derived from three distinct proteins.


Subject(s)
Bacterial Proteins/metabolism , Flagella/chemistry , Helicobacter pylori/chemistry , Protein Interaction Domains and Motifs , Protein Multimerization , Type III Secretion Systems/chemistry , Crystallography, X-Ray , Flagella/ultrastructure , Membrane Proteins , Multiprotein Complexes/chemistry , Protein Domains
15.
J Biol Chem ; 292(41): 16880-16890, 2017 10 13.
Article in English | MEDLINE | ID: mdl-28842489

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has developed multiple strategies to adapt to the human host. The five type VII secretion systems, ESX-1-5, direct the export of many virulence-promoting protein effectors across the complex mycobacterial cell wall. One class of ESX substrates is the PE-PPE family of proteins, which is unique to mycobacteria and essential for infection, antigenic variation, and host-pathogen interactions. The genome of Mtb encodes 168 PE-PPE proteins. Many of them are thought to be secreted through ESX-5 secretion system and to function in pairs. However, understanding of the specific pairing of PE-PPE proteins and their structure-function relationship is limited by the challenging purification of many PE-PPE proteins, and our knowledge of the PE-PPE interactions therefore has been restricted to the PE25-PPE41 pair and its complex with the ESX-5 secretion system chaperone EspG5. Here, we report the crystal structure of a new PE-PPE pair, PE8-PPE15, in complex with EspG5. Our structure revealed that the EspG5-binding sites on PPE15 are relatively conserved among Mtb PPE proteins, suggesting that EspG5-PPE15 represents a more typical model for EspG5-PPE interactions than EspG5-PPE41. A structural comparison with the PE25-PPE41 complex disclosed conformational changes in the four-helix bundle structure and a unique binding mode in the PE8-PPE15 pair. Moreover, homology-modeling and mutagenesis studies further delineated the molecular determinants of the specific PE-PPE interactions. These findings help develop an atomic algorithm of ESX-5 substrate recognition and PE-PPE pairing.


Subject(s)
Bacterial Proteins/chemistry , Mycobacterium tuberculosis/chemistry , Type V Secretion Systems/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Structure, Quaternary , Structure-Activity Relationship , Type V Secretion Systems/genetics , Type V Secretion Systems/metabolism
16.
Oncologist ; 23(11): 1273-1281, 2018 11.
Article in English | MEDLINE | ID: mdl-30108157

ABSTRACT

BACKGROUND: ß-amyloid precursor protein (APP), a potential target for Alzheimer's disease treatment, has recently been shown to take part in carcinogenesis. Increased APP promotes migration, survival, and proliferation in breast cancer cell lines. We examined the clinical value of APP in breast cancers. A comprehensive examination of clinicopathological features related to APP expression in a large cohort of breast cancers and the corresponding metastatic lymph nodes was performed. APP expression and its prognostic impact in different breast cancer subtypes were examined. RESULTS: APP was highly expressed in nonluminal breast cancers and correlated with features associated with nonluminal breast cancers (including higher grade, the presence of necrosis, and higher proliferative index, growth factor receptor, and basal marker expression). Multivariate Cox hazard analysis demonstrated that APP was an independent adverse prognostic factor of disease-free survival (DFS; hazard ratio [HR], 2.090; p = .013; 95% confidence interval [CI], 1.165-3.748) and breast cancer-specific survival (BCSS; HR, 2.631; p = .002; 95% CI, 1.408-4.915) in the nonluminal group. The independent prognostic impact was also seen in triple negative breast cancers. Interestingly, a higher expression of APP was found in nodal metastasis compared with primary tumor. Such APP upregulation was correlated with further distal metastasis and poorer outcome (DFS: log-rank, 12.848; p < .001; BCSS: log-rank, 13.947; p < .001). CONCLUSION: Our findings provided evidence of oncogenic roles of APP in clinical breast cancers. Patients with positive APP expression, particularly those with APP upregulation in lymph node metastases, may require vigilant monitoring of their disease and more aggressive therapy. IMPLICATIONS FOR PRACTICE: ß-amyloid precursor protein (APP), a potential target for Alzheimer's disease, has recently been implicated in oncogenesis. Here, evidence of its roles in clinical breast cancers is provided. Positive APP expression was found to be an independent prognostic factor in nonluminal cancers, particularly triple negative breast cancers (TNBCs). Interestingly, a higher APP in nodal metastases was associated with distal metastases. TNBCs are heterogeneous and currently have no available target therapy. APP could have therapeutic potential and be used to define the more aggressive cases in TNBCs. Current prognostic analysis is based on primary tumor. The present data suggest that investigation of nodal metastases could provide additional prognostic value.


Subject(s)
Aggression/physiology , Amyloid beta-Protein Precursor/adverse effects , Breast Neoplasms/complications , Adult , Aged , Aged, 80 and over , Breast Neoplasms/psychology , Female , Humans , Middle Aged , Prognosis , Young Adult
17.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26188042

ABSTRACT

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Immediate-Early Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Binding Sites , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Models, Molecular , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Protein Stability , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry
18.
FASEB J ; 28(1): 337-49, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24056087

ABSTRACT

FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.


Subject(s)
ADP-Ribosylation Factors/metabolism , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Nuclear Proteins/metabolism , ADP-Ribosylation Factor 6 , Animals , CHO Cells , Cells, Cultured , Cricetulus , Immunoprecipitation , Protein Binding , Rats , Two-Hybrid System Techniques
19.
Cell Mol Biol Lett ; 20(1): 66-87, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26204394

ABSTRACT

FE65 is a brain-enriched, developmentally regulated adaptor protein that was first identified as a binding partner of amyloid precursor protein (APP), an important molecule in Alzheimer's disease. FE65 possesses three protein interaction domains, including an N-terminal WW domain and two C-terminal phosphotyrosine-binding (PTB) domains. It is capable of mediating the assembly of multimolecular complexes. Although initial work reveals its roles in APP processing and gene transactivation, increasing evidence suggests that FE65 participates in more diverse biological processes than originally anticipated. This article discusses the role of FE65 in signal transduction during cell stress and protein turnover through the ubiquitin-proteasome system and in various neuronal processes, including neurogenesis, neuronal migration and positioning, neurite outgrowth, synapse formation and synaptic plasticity, learning, and memory.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Nerve Tissue Proteins/physiology , Nuclear Proteins/physiology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloidogenic Proteins/metabolism , Humans , Protein Interaction Domains and Motifs , Protein Modification, Translational , Signal Transduction , Stress, Physiological
20.
J Med Genet ; 51(9): 590-5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25062847

ABSTRACT

BACKGROUND: Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. METHODS AND RESULTS: Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. CONCLUSIONS: This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System/genetics , Microfilament Proteins/genetics , Mutation, Missense/genetics , Spinocerebellar Ataxias/genetics , Amino Acid Sequence , Base Sequence , Brain/diagnostic imaging , DNA Mutational Analysis , Exome/genetics , Hong Kong , Humans , MAP Kinase Signaling System/physiology , Magnetic Resonance Imaging , Middle Aged , Molecular Sequence Data , Pedigree , Radiography , Spinocerebellar Ataxias/pathology
SELECTION OF CITATIONS
SEARCH DETAIL