Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
J Chem Phys ; 155(21): 214901, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34879672

ABSTRACT

The self-assembly of binary colloidal mixtures provides a bottom-up approach to create novel functional materials. To elucidate the effect of composition, temperature, and pressure on the self-assembly behavior of size-asymmetric mixtures, we performed extensive dynamics simulations of a simple model of polymer-grafted colloids. We have used a core-softened interaction potential and extended it to represent attractive interactions between unlike colloids and repulsions between like colloids. Our study focused on size-asymmetric mixtures where the ratio between the sizes of the colloidal cores was fixed at σBσA=0.5. We have performed extensive simulations in the isothermal-isobaric and canonical (NVT) ensembles to elucidate the phase behavior and dynamics of mixtures with different stoichiometric ratios. Our simulation results uncovered a rich phase behavior, including the formation of hierarchical structures with many potential applications. For compositions where small colloids are the majority, sublattice melting occurs for a wide range of densities. Under these conditions, large colloids form a well-defined lattice, whereas small colloids can diffuse through the system. As the temperature is decreased, the small colloids localize, akin to a metal-insulator transition, with the small colloids playing a role similar to electrons. Our results are summarized in terms of phase diagrams.

SELECTION OF CITATIONS
SEARCH DETAIL