Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
BMC Womens Health ; 24(1): 197, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532373

ABSTRACT

BACKGROUND: Premenstrual syndrome (PMS) consists of psychiatric or somatic symptoms negatively affecting the daily life. PMS treatment can involve the use of complementary-alternative approaches. Hydrogen-rich water (HRW) has antioxidant and anti-inflammatory properties that may treat PMS. This study aimed to investigate the effect of drinking HRW on the severity of premenstrual symptoms and the quality of life of women who suffer from PMS. METHODS: This study is a randomized controlled trial. Participants were randomized into two groups (intervention group=33, control group=32) using the block randomization method. Participants were requested to consume 1500-2000 mL of HRW daily in the intervention group and drink water in the placebo group. Participants began drinking either HRW or placebo water from day 16 of their menstrual cycle until day 2 of the following cycle for three menstrual cycles. The research data were collected using a Demographic Information Form, Premenstrual Syndrome Scale (PMSS), and Short form of the World Health Organization Quality of Life Questionnaire (WHOQOL- BREF). RESULTS: The intervention group had significantly lower mean scores than the control group in both the first and second follow-ups on the PMSS (P<0.05). In the first follow-up, the intervention group had significantly higher mean scores in the Physical Health and Psychological domains of the WHOQOL-BREF compared to the control group (P<0.05). Group × time interaction was significant for PMSS (F = 10.54, P<0.001). Group × time interaction was insignificant for WHOQOL- BREF (P>0.05). CONCLUSIONS: The consumption of HRW reduces the severity of premenstrual symptoms and improves individuals' quality of life in physical and psychological domains.


Subject(s)
Premenstrual Syndrome , Quality of Life , Female , Humans , Drinking , Hydrogen , Premenstrual Syndrome/psychology
2.
Can J Physiol Pharmacol ; 101(10): 502-508, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37463517

ABSTRACT

Cardiac surgery-associated acute kidney injury is a common post-operative complication, mostly due to increasing oxidative stress. Recently, molecular hydrogen (H2 gas) has also been applied to cardiac surgery due to its ability to reduce oxidative stress. We evaluated the potential effect of H2 application on the kidney in an in vivo model of simulated heart transplantation. Pigs underwent cardiac surgery within 3 h while connected to extracorporeal circulation (ECC) and subsequent 60 min of spontaneous reperfusion of the heart. We used two experimental groups: T-pigs after transplantation and TH-pigs after transplantation treated with 4% H2 mixed with air during inhalation of anesthesia and throughout oxygenation of blood in ECC. The levels of creatinine, urea and phosphorus were measured in plasma. Renal tissue samples were analyzed by Western blot method for protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), and superoxide dismutase (SOD1). After cardiac surgery, selected plasma biomarkers were elevated. However, H2 therapy was followed by the normalization of all these parameters. Our results suggest activation of Nrf2/Keap1 pathway as well as increased SOD1 protein expression in the group treated with H2. The administration of H2 had a protective effect on the kidneys of pigs after cardiac surgery, especially in terms of normalization of plasma biomarkers to control levels.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Animals , Swine , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Kidney , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Superoxide Dismutase/metabolism , Cardiac Surgical Procedures/adverse effects , Hydrogen/pharmacology , Hydrogen/therapeutic use , Hydrogen/metabolism , Biomarkers/metabolism
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498838

ABSTRACT

Many studies demonstrate the safety of alkaline-electrolyzed-reduced water (ERW); however, several animal studies have reported significant tissue damage and hyperkalemia after drinking ERW. The mechanism responsible for these results remains unknown but may be due to electrode degradation associated with the production of higher pH, in which platinum nanoparticles and other metals that have harmful effects may leach into the water. Clinical studies have reported that, when ERW exceeds pH 9.8, some people develop dangerous hyperkalemia. Accordingly, regulations on ERW mandate that the pH of ERW should not exceed 9.8. It is recommended that those with impaired kidney function refrain from using ERW without medical supervision. Other potential safety concerns include impaired growth, reduced mineral, vitamin, and nutrient absorption, harmful bacterial overgrowth, and damage to the mucosal lining causing excessive thirst. Since the concentration of H2 in ERW may be well below therapeutic levels, users are encouraged to frequently measure the H2 concentration with accurate methods, avoiding ORP or ORP-based H2 meters. Importantly, although, there have been many people that have used high-pH ERW without any issues, additional safety research on ERW is warranted, and ERW users should follow recommendations to not ingest ERW above 9.8 pH.


Subject(s)
Metal Nanoparticles , Water , Animals , Electrolysis , Hydrogen , Platinum , Hydrogen-Ion Concentration , Oxidation-Reduction
4.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499079

ABSTRACT

Numerous benefits have been attributed to alkaline-electrolyzed-reduced water (ERW). Sometimes these claims are associated with easily debunked concepts. The observed benefits have been conjectured to be due to the intrinsic properties of ERW (e.g., negative oxidation-reduction potential (ORP), alkaline pH, H2 gas), as well enigmatic characteristics (e.g., altered water structure, microclusters, free electrons, active hydrogen, mineral hydrides). The associated pseudoscientific marketing has contributed to the reluctance of mainstream science to accept ERW as having biological effects. Finally, through many in vitro and in vivo studies, each one of these propositions was examined and refuted one-by-one until it was conclusively demonstrated that H2 was the exclusive agent responsible for both the negative ORP and the observed therapeutic effects of ERW. This article briefly apprised the history of ERW and comprehensively reviewed the sequential research demonstrating the importance of H2. We illustrated that the effects of ERW could be readily explained by the known biological effects of H2 and by utilizing conventional chemistry without requiring any metaphysical conjecture (e.g., microclustering, free electrons, etc.) or reliance on implausible notions (e.g., alkaline water neutralizes acidic waste). The H2 concentration of ERW should be measured to ensure it is comparable to those used in clinical studies.


Subject(s)
Electrolysis , Water , Water/chemistry , Hydrogen/therapeutic use , Hydrogen/pharmacology , Hydrogen-Ion Concentration
5.
Int J Mol Sci ; 23(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35270030

ABSTRACT

Molecular hydrogen ameliorates pathological states in a variety of human diseases, animal models, and cell models, but the effects of hydrogen on cancer have been rarely reported. In addition, the molecular mechanisms underlying the effects of hydrogen remain mostly unelucidated. We found that hydrogen enhances proliferation of four out of seven human cancer cell lines (the responders). The proliferation-promoting effects were not correlated with basal levels of cellular reactive oxygen species. Expression profiling of the seven cells showed that the responders have higher gene expression of mitochondrial electron transport chain (ETC) molecules than the non-responders. In addition, the responders have higher mitochondrial mass, higher mitochondrial superoxide, higher mitochondrial membrane potential, and higher mitochondrial spare respiratory capacity than the non-responders. In the responders, hydrogen provoked mitochondrial unfolded protein response (mtUPR). Suppression of cell proliferation by rotenone, an inhibitor of mitochondrial ETC complex I, was rescued by hydrogen in the responders. Hydrogen triggers mtUPR and induces cell proliferation in cancer cells that have high basal and spare mitochondrial ETC activities.


Subject(s)
Neoplasms , Unfolded Protein Response , Animals , Cell Proliferation , Hydrogen/metabolism , Hydrogen/pharmacology , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
6.
J Integr Neurosci ; 20(3): 667-676, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34645100

ABSTRACT

Traumatic brain injuries (TBIs) are a leading cause of death and disability. Sports-related TBIs are estimated to be more than several million per year. The pathophysiology of TBIs involves high levels of inflammation, oxidative stress, dysregulation of ion homeostasis, mitochondrial dysfunction, and apoptosis. There is also a reduction in cerebral blood flow, leading to hypoxia and reduced removal of metabolic waste, which further exacerbates the injury. There is currently no recognized effective medical treatment or intervention for TBIs, which may in part be due to the difficulty of drug delivery through the blood-brain barrier. Molecular hydrogen has recently emerged as a neuroprotective medical gas against cerebral infarction and neurodegenerative diseases including TBIs. Its small molecular size and nonpolar nature allow it to easily diffuse through the blood-brain barrier, cell membranes and subcellular compartments. Hydrogen has been shown to exert selective anti-inflammatory, antioxidant, and anti-apoptotic effects by regulating various transcription factors and protein phosphorylation cascades. Nitric oxide is another well-recognized medical gas that plays divergent roles in protecting from and in the recovery of TBIs, as well as in contributing to their pathophysiology and injury. Excessive activation of inducible nitric oxide synthase leads to excess inflammation and oxidative/nitrosative damage as well as a paradoxical nitric oxide depletion in the locations it is needed. Hydrogen regulates nitric oxide production and metabolism, which enhances its benefits while reducing its harms. A novel H2-infused, nitric oxide producing beverage, Hydro Shot, may have important neuroprotective benefits for TBIs. We report preliminary indications that Hydro Shot may be a meaningful adjuvant treatment for TBIs.


Subject(s)
Beverages , Brain Injuries, Traumatic/drug therapy , Hydrogen/pharmacology , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Adult , Brain Injuries, Traumatic/metabolism , Humans , Hydrogen/administration & dosage , Neuroprotective Agents/administration & dosage
7.
Mol Cell Biochem ; 457(1-2): 61-72, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30830529

ABSTRACT

microRNAs (miRNAs) constitute a large class of post-transcriptional regulators of gene expression. It has been estimated that miRNAs regulate up to 30% of the protein-coding genes in humans. They are implicated in many physiological and pathological processes, including those involved in radiation-induced heart damage. Biomedical studies indicate that molecular hydrogen has potential as a radioprotective agent due to its antioxidant, anti-inflammatory, and signal-modulating effects. However, the impact of molecular hydrogen on the expression of miRNAs in the heart after irradiation has not been investigated. This study aimed to explore the involvement of miRNA-1, -15b, and -21 in the protective action of molecular hydrogen on rat myocardium damaged by irradiation. The results showed that the levels of malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) increased in the rat myocardium after irradiation. Treatment with molecular hydrogen-rich water (HRW) reduced these values to the level of non-irradiated controls. miRNA-1 is known to be involved in cardiac hypertrophy, and was significantly decreased in the rat myocardium after irradiation. Application of HRW attenuated this decrease in all evaluated time periods. miRNA-15b is considered to be anti-fibrotic, anti-hypertrophic, and anti-oxidative. Irradiation downregulated miRNA-15b, whereas administration of HRW restored these values. miRNA-21 is connected with cardiac fibrosis. We observed significant increase in miRNA-21 expression in the irradiated rat hearts. Molecular hydrogen lowered myocardial miRNA-21 levels after irradiation. This study revealed for the first time that the protective effects of molecular hydrogen on irradiation-induced heart damage may be mediated by regulating miRNA-1, -15b, and -21.


Subject(s)
Gamma Rays/adverse effects , Hydrogen/pharmacology , MicroRNAs/metabolism , Myocardium/metabolism , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/prevention & control , Animals , Male , Myocardium/pathology , Rats , Rats, Wistar
8.
Can J Physiol Pharmacol ; 97(9): 797-807, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30970215

ABSTRACT

H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.


Subject(s)
Athletes , Hydrogen/pharmacology , Performance-Enhancing Substances/pharmacology , Humans
9.
Can J Physiol Pharmacol ; 97(4): 287-292, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30543459

ABSTRACT

Uncontrolled production of oxygen and nitrogen radicals results in oxidative and nitrosative stresses that impair cellular functions and have been regarded as causative common denominators of many pathological processes. In this review, we report on the beneficial effects of molecular hydrogen in scavenging radicals in an artificial system of •OH formation. As a proof of principle, we also demonstrate that in rat hearts in vivo, administration of molecular hydrogen led to a significant increase in superoxide dismutase as well as pAKT, a cell survival signaling molecule. Irradiation of the rats caused a significant increase in lipid peroxidation, which was mitigated by pre-treatment of the animals with molecular hydrogen. The nuclear factor erythroid 2-related factor 2 is regarded as an important regulator of oxyradical homeostasis, as well as it supports the functional integrity of cells, particularly under conditions of oxidative stress. We suggest that the beneficial effects of molecular hydrogen may be through the activation of nuclear factor erythroid 2-related factor 2 pathway that promotes innate antioxidants and reduction of apoptosis, as well as inflammation.


Subject(s)
Free Radical Scavengers/pharmacology , Hydrogen/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Radiation Injuries/metabolism , Animals , Humans , Hydroxyl Radical/metabolism
10.
Can J Physiol Pharmacol ; 97(9): 857-862, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31251888

ABSTRACT

Acute physical exercise increases reactive oxygen species in skeletal muscle, leading to tissue damage and fatigue. Molecular hydrogen (H2) acts as a therapeutic antioxidant directly or indirectly by inducing antioxidative enzymes. Here, we examined the effects of drinking H2 water (H2-infused water) on psychometric fatigue and endurance capacity in a randomized, double-blind, placebo-controlled fashion. In Experiment 1, all participants drank only placebo water in the first cycle ergometer exercise session, and for comparison they drank either H2 water or placebo water 30 min before exercise in the second examination. In these healthy non-trained participants (n = 99), psychometric fatigue judged by visual analogue scales was significantly decreased in the H2 group after mild exercise. When each group was divided into 2 subgroups, the subgroup with higher visual analogue scale values was more sensitive to the effect of H2. In Experiment 2, trained participants (n = 60) were subjected to moderate exercise by cycle ergometer in a similar way as in Experiment 1, but exercise was performed 10 min after drinking H2 water. Endurance and fatigue were significantly improved in the H2 group as judged by maximal oxygen consumption and Borg's scale, respectively. Taken together, drinking H2 water just before exercise exhibited anti-fatigue and endurance effects.


Subject(s)
Drinking Water/chemistry , Fatigue/psychology , Hydrogen , Physical Endurance/drug effects , Adult , Aged , Double-Blind Method , Fatigue/metabolism , Female , Humans , Hydrogen/metabolism , Male , Middle Aged , Placebos , Psychometrics , Young Adult
11.
Molecules ; 24(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159153

ABSTRACT

Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.


Subject(s)
Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/therapy , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Combined Modality Therapy , Humans , Hydrogen/metabolism , Hydrogen/pharmacology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Radiation Injuries/complications , Reactive Oxygen Species/metabolism , Treatment Outcome
12.
Biol Pharm Bull ; 41(7): 1040-1048, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29743387

ABSTRACT

SuHeXiang (SHX) has been used to treat a wide range of diseases, including those related to the central nervous system. However, the effects of SHX on mood disorders are still elusive. This study aimed to investigate the effects of SHX essential oil on stress-induced depression of mice. In an acute stress-induced depression model, mice inhaled vehicle (1% Tween 80) for 10 min or 10% SHX for 10 or 30 min once daily for 12 continuous days. In the chronic mild stress (CMS)-induced depression model, mice were exposed to a 28-d CMS treatment. Tail suspension test (TST), forced swimming test (FST), sucrose preference test (SPT), open field test (OFT), and novelty suppressed feeding (NSF) test were conducted. In addition, serum levels of angiogenin (ANG), thrombopoietin (TPO), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated by enzyme-linked immunosorbent assay (ELISA) assays. The results showed that in mice exposed to acute stress, repeated SHX inhalation exerted significant antidepressant and anxiolytic activities, and also reduced the serum levels of ANG, TPO, IL-6, and TNF-α. It also significantly reversed the depressive and anxiety-like behaviors, and reduced the serum levels of ANG and TPO in mice exposed to CMS. This is the first report to show that SHX inhalation could produce significant antidepressant and anxiolytic-like effects. These effects might be mediated by SHX ability to modulate the inflammatory response, and reduce dysfunction of vascular genesis and thrombosis. These results support further exploration for developing SHX inhalation as a novel therapeutic strategy for depression and stress-related disorders.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Depression/drug therapy , Drugs, Chinese Herbal/chemistry , Oils, Volatile/pharmacology , Administration, Inhalation , Animals , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacology , Anxiety/etiology , Behavior, Animal/drug effects , Depression/etiology , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred ICR , Motor Activity/drug effects , Oils, Volatile/chemistry , Stress, Psychological/complications
14.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38675429

ABSTRACT

Stem cell therapy has emerged as a promising avenue for regenerative medicine, offering the potential to treat a wide range of debilitating diseases and injuries. Among the various types of stem cells, mesenchymal stem cells (MSCs) have garnered significant attention due to their unique properties and therapeutic potential. In recent years, researchers have been exploring novel approaches to enhance the effectiveness of MSC-based therapies. One such approach that has gained traction is the priming of MSCs with molecular hydrogen (H2). This article delves into the fascinating world of mesenchymal stem cell priming with molecular hydrogen and the potential benefits it holds for regenerative medicine.

15.
J Nutr Health Aging ; 28(8): 100287, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908296

ABSTRACT

OBJECTIVES: To assess the impact of medium-term supplementation with dihydrogen and pyrroloquinoline quinone (PQQ) on mitochondrial biomarkers, brain metabolism, and cognition in elderly individuals diagnosed with mild cognitive impairment. DESIGN: A parallel-group, randomized, placebo-controlled, double-blind experimental design, maintaining a 1:1 allocation ratio between the experimental group (receiving the dihydrogen-producing minerals and PQQ) and the control group (receiving the placebo) throughout the trial. SETTING AND PARTICIPANTS: Thirty-four elderly individuals with mild cognitive impairment (mean age 71.9 ± 3.8 years; 28 females) voluntarily provided written consent to participate in this trial. Participants were assigned in a double-blind parallel-group design to receive either a dihydrogen-PQQ mixture (Alpha Hope®, CalerieLife, Irvine, CA) or placebo twice daily for a 6-week intervention period. METHODS: The primary endpoint was the change in serum brain-derived neurotrophic factor (BDNF) from baseline to the 6-week follow-up; secondary outcomes included cognitive function indices, specific metabolites in brain tissue, brain oxygenation, and the prevalence and severity of side effects. Interaction effects (time vs. intervention) were evaluated using two-way ANOVA with repeated measures and Friedman's 2-way ANOVA by ranks, for normally distributed data with homogeneous variances and non-homogeneous variances, respectively. RESULTS: Dihydrogen-PQQ resulted in a significant elevation in serum BDNF levels at the six-week follow-up (P = 0.01); conversely, no changes in BDNF levels were observed in the placebo group throughout the study duration (P = 0.27). A non-significant trend in the impact of interventions on BDNF levels was observed (treatment vs. time interaction, P = 0.14), suggesting a tendency for dihydrogen-PQQ to upregulate BDNF levels compared to the placebo. A significant interaction effect was observed for the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) scores in the orientation domain (P = 0.03), indicating the superiority of dihydrogen-PQQ over placebo in enhancing this cognitive aspect. Cerebral oxygenation saturation exhibited a significant increase following the administration of the dihydrogen-PQQ mixture, from 48.4 ± 7.2% at baseline to 52.8 ± 6.6% at 6-week post-administration (P = 0.005). In addition, brain N-acetyl aspartate levels significantly increased at seven out of thirteen locations post-intervention in participants receiving the mixture (P ≤ 0.05). CONCLUSIONS: Despite the limited number of participants included in the study for interpreting clinical parameters, the dihydrogen-PQQ mixture blend shows promise as a potential dietary intervention for enhancing mental orientation and brain metabolism in individuals with age-related mild cognitive decline.

16.
Sleep Adv ; 5(1): zpad057, 2024.
Article in English | MEDLINE | ID: mdl-38264142

ABSTRACT

Study Objectives: Sleep loss contributes to various health issues and impairs neurological function. Molecular hydrogen has recently gained popularity as a nontoxic ergogenic and health promoter. The effect of molecular hydrogen on sleep and sleep-related neural systems remains unexplored. This study investigates the impact of hydrogen-rich water (HRW) on sleep behavior and neuronal activation in sleep-deprived mice. Methods: Adult C57BL/6J mice were implanted with electroencephalography (EEG) and electromyography (EMG) recording electrodes and given HRW (0.7-1.4 mM) or regular water for 7 days ad libitum. Sleep-wake cycles were recorded under baseline conditions and after acute sleep loss. Neuronal activation in sleep- and wake-related regions was assessed using cFos immunostaining. Results: HRW increased sleep consolidation in undisturbed mice and increased non-rapid-eye movement and rapid-eye-movement sleep amount in sleep-deprived mice. HRW also decreased the average amount of time for mice to fall asleep after light onset. Neuronal activation in the lateral septum, medial septum, ventrolateral preoptic area, and median preoptic area was significantly altered in all mice treated with HRW. Conclusions: HRW improves sleep consolidation and increases neuronal activation in sleep-related brain regions. It may serve as a simple, effective treatment to improve recovery after sleep loss.

17.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37111284

ABSTRACT

The anti-inflammatory and anti-apoptotic effects of molecular hydrogen, delivered as hydrogen-rich saline (HRS), on spinal cord injury was investigated. Four-month-old male Sprague Dawley rats (n = 24) were classified into four groups: (1) control-laminectomy only at T7-T10; (2) spinal injury-dura left intact, Tator and Rivlin clip compression model applied to the spinal cord for 1 min, no treatment given; (3) HRS group-applied intraperitoneally (i.p.) for seven days; and (4) spinal injury-HRS administered i.p. for seven days after laminectomy at T7-T10 level, leaving the dura intact and applying the Tator and Rivlin clip compression model to the spinal cord for 1 min. Levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in blood taken at day seven from all groups, and hematoxylin-eosin (H & E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to stain the tissue samples. IL-6 and TNF-α levels were significantly lower in the group treated with HRS following the spinal cord injury compared to the group whose spinal cord was damaged. A decrease in apoptosis was also observed. The anti-inflammatory and anti-apoptotic effect of IL-6 may be a clinically useful adjuvant therapy after spinal cord injury.

18.
Diseases ; 11(4)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37873771

ABSTRACT

BACKGROUND: Recently, chronic lung diseases have been found to be associated with marked inflammation and oxidative stress, which leads to fibrosis in the lungs and chronic respiratory failure. This study aims to determine if hydrogen-rich water (HRW) can enhance oxygen saturation among patients with chronic lung diseases. METHODS: Ten patients with chronic lung diseases due to COPD (n = 7), bronchial asthma (n = 2), and tuberculosis of the lung (n = 1) with oxygen saturation of 90-95% were provided high-concentration (>5 mM) HRW using H2-producing tablets for 4 weeks. Oxygen saturation was measured via oximeter and blood pressure via digital automatic BP recorder. RESULTS: HRW administration was associated with a significant increase in oxygen saturation (SpO2) and decrease in TBARS, MDA, and diene conjugates, with an increase in vitamin E and nitrite levels, compared to baseline levels. Physical training carried out after HRW therapy appeared to increase exercise tolerance and decrease hypoxia, as well as delay the need for oxygen therapy. CONCLUSION: Treatment with HRW in patients with hypoxia from chronic lung diseases may decrease oxidative stress and improve oxygen saturation in some patients. HRW therapy may also provide increased exercise tolerance in patients with chronic hypoxia, but further research is needed.

19.
Antioxidants (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978884

ABSTRACT

It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.

20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895907

ABSTRACT

Skeletal muscle atrophy is associated with poor quality of life and disability. Thus, finding a new strategy for the prevention and treatment of skeletal muscle atrophy is very crucial. This study aimed to investigate the therapeutic potential of hydrogen-rich water (HRW) on muscle atrophy in a unilateral hind limb immobilization model. Thirty-six male Balb/C mice were divided into control (without immobilization), atrophy, and atrophy + hydrogen-rich water (HRW). Unilateral hind limb immobilization was induced using a splint for 7 days (atrophy) and removed for 10 days (recovery). At the end of each phase, gastrocnemius and soleus muscle weight, limb grip strength, skeletal muscle histopathology, muscle fiber size, cross-section area (CSA), serum troponin I and skeletal muscle IL-6, TNF-α and Malondialdehyde (MDA), and mRNA expression of NF-κB, BAX and Beclin-1 were evaluated. Muscle weight and limb grip strength in the H2-treated group were significantly improved during the atrophy phase, and this improvement continued during the recovery period. Treatment by HRW increased CSA and muscle fiber size and reduced muscle fibrosis, serum troponin I, IL-6, TNF-α and MDA which was more prominent in the atrophy phase. These data suggest that HRW could improve muscle atrophy in an immobilized condition and could be considered a new strategy during rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL