Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(27): 8403-8, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26080435

ABSTRACT

Prostate cancer antigen 3 (PCA3) is the most specific prostate cancer biomarker but its function remains unknown. Here we identify PRUNE2, a target protein-coding gene variant, which harbors the PCA3 locus, thereby classifying PCA3 as an antisense intronic long noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels via a unique regulatory mechanism involving formation of a PRUNE2/PCA3 double-stranded RNA that undergoes adenosine deaminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA editing. PRUNE2 expression or silencing in prostate cancer cells decreased and increased cell proliferation, respectively. Moreover, PRUNE2 and PCA3 elicited opposite effects on tumor growth in immunodeficient tumor-bearing mice. Coregulation and RNA editing of PRUNE2 and PCA3 were confirmed in human prostate cancer specimens, supporting the medical relevance of our findings. These results establish PCA3 as a dominant-negative oncogene and PRUNE2 as an unrecognized tumor suppressor gene in human prostate cancer, and their regulatory axis represents a unique molecular target for diagnostic and therapeutic intervention.


Subject(s)
Antigens, Neoplasm/genetics , Introns/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Tumor Suppressor Proteins/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , MCF-7 Cells , Male , Mice, SCID , Molecular Sequence Data , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , RNA Interference , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Long Noncoding/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL