Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Exp Physiol ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207908

ABSTRACT

We investigated whether 10 weeks of pre-season soccer training (including high-intensity resistance exercise) with hydrolysed collagen (COL) supplementation would confer greater changes in patellar tendon (PT) mechanical and material properties compared with placebo (PLA) in professional female soccer athletes. Eleven athletes from the first team squad of a Football Association Women's Championship soccer club volunteered to participate in this study (age, 25.7 ± 4.2 years; height, 1.68 ± 0.04 m; mass, 64.0 ± 4.6 kg). Participants were pair-matched for baseline knee extensor maximum isometric voluntary contraction torque, age, height and mass and were randomly assigned to the COL group (n = 6) or PLA group (n = 5). Participants were given 30 g COL or energy-matched (36.5 g maltodextrin and 8.4 g fructose) PLA, plus 500 mg vitamin C before each training session, which consisted of high-intensity lower-limb resistance exercise, plyometric or pitch-based exercise 3 days/week for 10 weeks during the pre-season period. We assessed knee extensor maximum isometric voluntary contraction torque and PT properties using isokinetic dynamometry and ultrasonography before and after the intervention. The PT stiffness [COL, +15.4% ± 3.1% (d = 0.81) vs. PLA, +4.6% ± 3.0% (d = 0.32), P = 0.002] and Young's modulus [COL, +14.2% ± 4.0% (d = 0.65) vs. PLA, +3.4% ± 2.8% (d = 0.15), P = 0.004] increased more in COL than in PLA. There was a main effect of training on PT cross-sectional area (P = 0.027), but no interaction effect (P = 0.934). To conclude, 10 weeks of pre-season soccer training (incorporating high-intensity resistance exercise) with 30 g COL increased PT stiffness and Young's modulus more than training alone in professional female soccer athletes. This has positive implications for improving athletic performance and mitigating injury risk.

2.
Exp Physiol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38984642

ABSTRACT

We investigated the effects of resistance exercise (RE), hydrolysed collagen (HC) ingestion and circulating oestrogen concentration on collagen synthesis in a naturally menstruating female CrossFit athlete. In a double-blind, randomised cross-over design, the participant (36 years; height 1.61 m; mass 82.6 kg) consumed 0 or 30 g HC prior to performing back-squat RE when endogenous circulating oestrogen concentration was low (onset of menses, OM) and high (late follicular phase, LF) during two consecutive menstrual cycles. Ten 5-mL blood samples were collected during each of the four interventions to analyse concentrations of serum 17ß-oestradiol, and biomarkers of type I collagen turnover, that is serum procollagen type I N-terminal propeptide (PINP, a biomarker of collagen synthesis) and plasma ß-isomerised C-terminal telopeptide of type I collagen (ß-CTX, a biomarker of collagen breakdown), as well as the serum concentration of 18 collagen amino acids. 17ß-Oestradiol concentration was 5-fold higher at LF (891 ± 116 pmol L-1) than OM (180 ± 13 pmol L-1). The PINP concentration × time area under the curve (AUC) was higher in the 30 g HC OM intervention (201 µg L-1 h) than the 30 g HC LF (144 µg L-1 h), 0 g HC OM (151 µg L-1 h) and 0 g HC LF (122 µg L-1 h) interventions. ß-CTX concentration decreased 1.4-fold from pre-RE to 6 h post-RE in all interventions. Thus, high circulating oestrogen concentration was associated with lower collagen synthesis following RE in this female athlete. Ingesting 30 g HC, however, augmented the collagen synthesis response at LF and particularly at OM. HIGHLIGHTS: What is the central question of this study? Does resistance exercise-induced collagen synthesis vary according to circulating oestrogen concentration in a naturally menstruating female athlete, and if so, does hydrolysed collagen ingestion have any impact? What is the main finding and its importance? Exercise-induced collagen synthesis was low when circulating oestrogen concentration was high and vice versa. However, ingesting 30 g hydrolysed collagen prior to exercise reduced the negative effect of oestrogen on collagen synthesis. As high circulating oestrogen has been associated with greater injury risk in females, supplementing exercise with hydrolysed collagen may help protect these tissues from injury.

3.
Eur Radiol ; 34(8): 5379-5388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38231393

ABSTRACT

OBJECTIVE: Blood-labyrinthine barrier leakage has been reported in sudden sensorineural hearing loss (SSNHL). We compared immediate post-contrast 3D heavily T2-weighted fluid-attenuated inversion recovery (FLAIR), T1 spin echo (SE), and 3D T1 gradient echo (GRE) sequences, and heavily T2-weighted FLAIR (hvT2F) with and without deep learning-based reconstruction (DLR) in detecting perilymphatic enhancement. METHODS: Fifty-four patients with unilateral SSNHL who underwent ear MRI with three sequences were included. We compared asymmetry scores, confidence scores, and detection rates of perilymphatic enhancement among the three sequences and obtained 3D hvT2F with DLR from 35 patients. The above parameters and subjective image quality between 3D hvT2F with and without DLR were compared. RESULTS: Asymmetry scores and detection rate of 3D hvT2F were significantly higher than 3D GRE T1 and SE T1 (respectively, 1.37, 0.11, 0.19; p < 0.001). Asymmetry scores significantly increased with DLR compared to 3D hvT2F for experienced and inexperienced readers (respectively, 1.77 vs. 1.40, p = 0.036; 1.49 vs. 1.03, p = 0.012). The detection rate significantly increased only for the latter (57.1% vs. 31.4%, p = 0.022). Patients with perilymphatic enhancement had significantly higher air conduction thresholds on initial (77.96 vs. 57.79, p = 0.002) and 5 days after presentation (63.38 vs. 41.85, p = 0.019). CONCLUSION: 3D hvT2F significantly increased the detectability of perilymphatic enhancement compared to 3D GRE T1 and SE T1. DLR further improved the conspicuity of perilymphatic enhancement in 3D hvT2F. 3D hvT2F and DLR are useful for evaluating blood-labyrinthine barrier leakage; furthermore, they might provide prognostic value in the early post-treatment period. CLINICAL RELEVANCE STATEMENT: Ten-minute post-contrast 3D heavily T2-weighed FLAIR imaging is a potentially efficacious sequence in demonstrating perilymphatic enhancement in patients with sudden sensorineural hearing loss and may be further improved by deep learning-based reconstruction. KEY POINTS: • 3D heavily T2-weighted FLAIR (3D hvT2F) is a sequence sensitive in detecting low concentrations of contrast in the perilymphatic space. • 3D hvT2F sequences properly demonstrated perilymphatic enhancement in sudden sensorineural hearing loss compared to T1 sequences and were further improved by deep learning-based reconstruction (DLR). • 3D hvT2F and DLR are efficacious sequences in detecting blood-labyrinthine barrier leakage and with potential prognostic information.


Subject(s)
Deep Learning , Hearing Loss, Sensorineural , Hearing Loss, Sudden , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Male , Female , Middle Aged , Hearing Loss, Sensorineural/diagnostic imaging , Imaging, Three-Dimensional/methods , Adult , Magnetic Resonance Imaging/methods , Aged , Hearing Loss, Sudden/diagnostic imaging , Ear, Inner/diagnostic imaging , Young Adult , Retrospective Studies , Contrast Media , Image Interpretation, Computer-Assisted/methods
4.
J Nutr ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38007183

ABSTRACT

BACKGROUND: Resistance exercise (RE) stimulates collagen synthesis in skeletal muscle and tendon but there is limited and equivocal evidence regarding an effect of collagen supplementation and exercise on collagen synthesis. Furthermore, it is not known if a dose-response exists regarding the effect of hydrolyzed collagen (HC) ingestion and RE on collagen synthesis. OBJECTIVE: To determine the HC dose-response effect on collagen synthesis after high-intensity RE in resistance-trained young men. METHODS: Using a double-blind, randomized crossover design, 10 resistance-trained males (age: 26 ± 3 y; height: 1.77 ± 0.04 m; mass: 79.7 ± 7.0 kg) ingested 0 g, 15 g, or 30 g HC with 50 mg vitamin C 1 h before performing 4 sets' barbell back squat RE at 10-repetition maximum load, after which they rested for 6 h. Blood samples were collected throughout each of the 3 interventions to analyze procollagen type Ⅰ N-terminal propeptide (PINP) and ß-isomerized C-terminal telopeptide of type I collagen (ß-CTX) concentration, and the concentration of 18 collagen amino acids. RESULTS: The serum PINP concentration × time area under the curve (AUC) was greater for 30 g (267 ± 79 µg·L-1·h) than for 15 g (235 ± 70 µg·L-1·h, P = 0.013) and 0 g HC (219 ± 88 µg·L-1·h, P = 0.002) but there was no difference between 0 and 15 g HC (P = 0.225). The AUCs of glycine and proline were greater for 30 g than for 15 and 0 g HC (P < 0.05). Plasma ß-CTX concentration decreased from -1 to +6 h (P < 0.05), with no differences between interventions. CONCLUSIONS: Ingesting 30 g HC before high-intensity RE augments whole-body collagen synthesis more than 15 g and 0 g HC in resistance-trained young males.

5.
Skeletal Radiol ; 52(8): 1545-1555, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36943429

ABSTRACT

OBJECTIVE: To compare the image quality and agreement among conventional and accelerated periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI with both conventional reconstruction (CR) and deep learning-based reconstruction (DLR) methods for evaluation of shoulder. MATERIALS AND METHODS: We included patients who underwent conventional (acquisition time, 8 min) and accelerated (acquisition time, 4 min and 24 s; 45% reduction) PROPELLER shoulder MRI using both CR and DLR methods between February 2021 and February 2022 on a 3 T MRI system. Quantitative evaluation was performed by calculating the signal-to-noise ratio (SNR). Two musculoskeletal radiologists compared the image quality using conventional sequence with CR as the reference standard. Interobserver agreement between image sets for evaluating shoulder was analyzed using weighted/unweighted kappa statistics. RESULTS: Ninety-two patients with 100 shoulder MRI scans were included. Conventional sequence with DLR had the highest SNR (P < .001), followed by accelerated sequence with DLR, conventional sequence with CR, and accelerated sequence with CR. Comparison of image quality by both readers revealed that conventional sequence with DLR (P = .003 and P < .001) and accelerated sequence with DLR (P = .016 and P < .001) had better image quality than the conventional sequence with CR. Interobserver agreement was substantial to almost perfect for detecting shoulder abnormalities (κ = 0.600-0.884). Agreement between the image sets was substantial to almost perfect (κ = 0.691-1). CONCLUSION: Accelerated PROPELLER with DLR showed even better image quality than conventional PROPELLER with CR and interobserver agreement for shoulder pathologies comparable to that of conventional PROPELLER with CR, despite the shorter scan time.


Subject(s)
Deep Learning , Shoulder , Humans , Shoulder/diagnostic imaging , Artifacts , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio
6.
Adapt Phys Activ Q ; 40(3): 541-550, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36577422

ABSTRACT

South Korea has developed its first Para Report Card on physical activity (PA) for children and adolescents with disabilities. Five national surveillance databases were used to evaluate PA indicators based on the benchmarks and grading rubric provided by Active Healthy Kids Global Alliance. Report card evaluation committees were invited to grade and assess the results using strengths, weaknesses, opportunities, and threats analysis. Five indicators (overall PA, D+; organized sports and PA, D-; active transportation, D-; physical fitness, D+; and government, A+) and one additional indicator (sleep, C-) were assigned a letter grade. The other five indicators were graded as incomplete. The Para Report Card revealed a significant gap between the behavioral-indicator grades (D- to D+) and the policy-indicator grade (A+), suggesting that government strategies and investment have not yet been translated into behavioral PA among children and adolescents with disabilities.


Subject(s)
Disabled Persons , Sedentary Behavior , Humans , Child , Adolescent , Health Policy , Health Promotion , Exercise , Republic of Korea
7.
AJR Am J Roentgenol ; 218(3): 506-516, 2022 03.
Article in English | MEDLINE | ID: mdl-34523950

ABSTRACT

BACKGROUND. Shoulder MRI using standard multiplanar sequences requires long scan times. Accelerated sequences have tradeoffs in noise and resolution. Deep learning-based reconstruction (DLR) may allow reduced scan time with preserved image quality. OBJECTIVE. The purpose of this study was to compare standard shoulder MRI sequences and accelerated sequences without and with DLR in terms of image quality and diagnostic performance. METHODS. This retrospective study included 105 patients (45 men, 60 women; mean age, 57.6 ± 10.9 [SD] years) who underwent a total of 110 3-T shoulder MRI examinations. Examinations included standard sequences (scan time, 9 minutes 23 seconds) and accelerated sequences (3 minutes 5 seconds; 67% reduction), both including fast spin-echo sequences in three planes. Standard sequences were reconstructed using the conventional pipeline; accelerated sequences were reconstructed using both the conventional pipeline and a commercially available DLR pipeline. Two radiologists independently assessed three image sets (standard sequence, accelerated sequence without DLR, and accelerated sequence with DLR) for subjective image quality and artifacts using 4-point scales (4 = highest quality) and identified pathologies of the subscapularis tendon, supraspinatus-infraspinatus tendon, long head of the biceps brachii tendon, and glenoid labrum. Interobserver agreement and agreement between image sets for the evaluated pathologies were assessed using weighted kappa statistics. In 27 patients who underwent arthroscopy, diagnostic performance was calculated using arthroscopic findings as a reference standard. RESULTS. Mean subjective image quality scores for readers 1 and 2 were 10.6 ± 1.2 and 10.5 ± 1.4 for the standard sequence, 8.1 ± 1.3 and 7.2 ± 1.1 for the accelerated sequence without DLR, and 10.7 ± 1.2 and 10.5 ± 1.6 for the accelerated sequence with DLR. Mean artifact scores for readers 1 and 2 were 9.3 ± 1.2 and 10.0 ± 1.0 for the standard sequence, 7.3 ± 1.3 and 9.1 ± 0.8 for the accelerated sequence without DLR, and 9.4 ± 1.2 and 9.8 ± 0.8 for the accelerated sequence with DLR. Interobserver agreement ranged from kappa of 0.813-0.951 except for accelerated sequence without DLR for the supraspinatus-infraspinatus tendon (κ = 0.673). Agreement between image sets ranged from kappa of 0.809-0.957 except for reader 1 for supraspinatus-infraspinatus tendon (κ = 0.663-0.700). Accuracy, sensitivity, and specificity for tears of the four structures were not different (p > .05) among image sets. CONCLUSION. Accelerated sequences with DLR provide 67% scan time reduction with similar subjective image quality, artifacts, and diagnostic performance to standard sequences. CLINICAL IMPACT. Accelerated sequences with DLR may provide an alternative to standard sequences for clinical shoulder MRI.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Shoulder Injuries/diagnostic imaging , Female , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Shoulder Joint/diagnostic imaging
8.
Radiology ; 298(1): 114-122, 2021 01.
Article in English | MEDLINE | ID: mdl-33141001

ABSTRACT

Background Achieving high-spatial-resolution pituitary MRI is challenging because of the trade-off between image noise and spatial resolution. Deep learning-based MRI reconstruction enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice MRI. Purpose To assess the diagnostic performance of 1-mm slice thickness MRI with deep learning-based reconstruction (DLR) (hereafter, 1-mm MRI+DLR) compared with 3-mm slice thickness MRI (hereafter, 3-mm MRI) for identifying residual tumor and cavernous sinus invasion in the evaluation of postoperative pituitary adenoma. Materials and Methods This single-institution retrospective study included 65 patients (mean age ± standard deviation, 54 years ± 10; 26 women) who underwent a combined imaging protocol including 3-mm MRI and 1-mm MRI+DLR for postoperative evaluation of pituitary adenoma between August and October 2019. Reference standards for correct diagnosis were established by using all available imaging resources, clinical histories, laboratory findings, surgical records, and pathology reports. The diagnostic performances of 3-mm MRI, 1-mm slice thickness MRI without DLR (hereafter, 1-mm MRI), and 1-mm MRI+DLR for identifying residual tumor and cavernous sinus invasion were evaluated by two readers and compared between the protocols. Results The performance of 1-mm MRI+DLR in the identification of residual tumor was comparable to that of 3-mm MRI (area under the receiver operating characteristic curve [AUC], 0.89-0.92 vs 0.85-0.89, respectively; P ≥ .09). In the identification of cavernous sinus invasion, the diagnostic performance of 1-mm MRI+DLR was higher than that of 3-mm MRI (AUC, 0.95-0.98 vs 0.83-0.87, respectively; P ≤ .02). Conventional 1-mm MRI (AUC, 0.82-0.83) showed comparable diagnostic performance to 3-mm MRI (AUC, 0.83-0.87) (P ≥ .38). With 1-mm MRI+DLR, residual tumor was diagnosed in 20 patients and cavernous sinus invasion was diagnosed in 14 patients, in whom these diagnoses were not made with 3-mm MRI. Conclusion In the postoperative evaluation of pituitary adenoma, 1-mm slice thickness MRI with deep learning-based reconstruction showed higher diagnostic performance than 3-mm slice thickness MRI in the identification of cavernous sinus invasion and comparable diagnostic performance to 3-mm slice thickness MRI in the identification of residual tumor. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Adenoma/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pituitary Neoplasms/diagnostic imaging , Postoperative Care/methods , Adenoma/pathology , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness , Pituitary Gland/diagnostic imaging , Pituitary Gland/pathology , Pituitary Gland/surgery , Pituitary Neoplasms/pathology
9.
NMR Biomed ; 34(8): e4561, 2021 08.
Article in English | MEDLINE | ID: mdl-34080736

ABSTRACT

An increase in hyperpolarized (HP) [1-13 C]lactate production has been suggested as a biomarker for cancer occurrence as well as for response monitoring of cancer treatment. Recently, the use of metformin has been suggested as an anticancer or adjuvant treatment. By regulating the cytosolic NAD+ /NADH redox state, metformin stimulates lactate production and increases the HP [1-13 C]lactate conversion rate in the kidney, liver, and heart. In general, increased HP [1-13 C]lactate is regarded as a sign of cancer occurrence or tumor growth. Thus, the relationship between the tumor suppression effect of metformin and the change in metabolism monitored by HP [1-13 C]pyruvate MRS in cancer treatment needs to be investigated. The present study was performed using a brain metastasis animal model with MDA-MB-231(BR)-Luc breast cancer cells. HP [1-13 C]pyruvate MRS, T2 -weighted MRI, and bioluminescence imaging were performed in groups treated with metformin or adjuvant metformin and radiation therapy. Metformin treatment alone did not display a tumor suppression effect, and the HP [1-13 C]lactate conversion rate increased. In radiation therapy, the HP [1-13 C]lactate conversion rate decreased with tumor suppression, with a p-value of 0.028. In the adjuvant metformin and radiation treatment, the tumor suppression effect increased, with a p-value of 0.001. However, the apparent HP [1-13 C]lactate conversion rate (Kpl ) was observed to be offset by two opposite effects: a decrease on radiation therapy and an increase caused by metformin treatment. Although HP [1-13 C]pyruvate MRS could not evaluate the tumor suppression effect of adjuvant metformin and radiation therapy due to the offset phenomenon, metabolic changes following only metformin pre-treatment could be monitored. Therefore, our results indicate that the interpretation of HP [1-13 C]pyruvate MRS for response monitoring of cancer treatment should be carried out with caution when metformin is used as an adjuvant cancer therapy.


Subject(s)
Adjuvants, Pharmaceutic/pharmacology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Carbon Isotopes/chemistry , Lactic Acid/metabolism , Magnetic Resonance Imaging , Metformin/pharmacology , Radiation, Ionizing , Animals , Apoptosis , Brain Neoplasms/secondary , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Pyruvic Acid/metabolism , Xenograft Model Antitumor Assays
10.
Eur Radiol ; 31(9): 6438-6445, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33609144

ABSTRACT

OBJECTIVES: High cochlear signal intensity on three-dimensional (3D) T2 fluid-attenuated inversion recovery (FLAIR) sequences in patients with sudden sensorineural hearing loss (SSNHL) has been reported. Here, we evaluated the cochlear T2 relaxation time differences in patients with idiopathic SSNHL using quantitative synthetic MRI (SyMRI). METHODS: Twenty-four patients with unilateral SSNHL who underwent precontrast conventional 3D FLAIR and SyMRI were retrospectively included. T1 and T2 relaxation times and the proton density (PD) of the bilateral ears were measured by manually drawn regions of interest. Wilcoxon signed-rank tests and intra- and interobserver correlation analyses were performed. Qualitative analysis was also performed to determine the presence and laterality of the asymmetric high signal intensity on synthetic FLAIR (SyFLAIR) images. RESULTS: The T2 relaxation time was significantly lower in the affected (basal and apico-middle turns) than in the unaffected cochlea (basal turn: 519 ± 181.3 vs. 608.8 ± 203.6, p = 0.042; apico-middle turn: 410.8 ± 163.8 vs. 514.5 ± 186.3, p = 0.037). There were no significant differences in the T1 relaxation time and PD between the affected and unaffected ears (p > 0.05). Additionally, three patients without asymmetric signal intensity on conventional MRI showed asymmetric increased signal intensity in the affected ear on SyFLAIR. CONCLUSIONS: The T2 relaxation time was significantly shorter in the affected than in the unaffected cochlea of patients with idiopathic SSNHL. The SyMRI-derived T2 relaxation time may be a promising imaging marker, suggesting that the changes in inner ear fluid composition are implicated in the idiopathic SSNHL development. KEY POINTS: • T2 relaxation time was significantly lower in the affected than in the unaffected cochlea. • SyFLAIR showed increased lesion conspicuity compared to conventional 3D-FLAIR in detecting asymmetric high signal intensity of the affected side. • SyMRI-derived T2 relaxation time may be a promising imaging marker of the affected ear in patients with idiopathic SSNHL.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss, Sudden , Cochlea/diagnostic imaging , Hearing Loss, Sensorineural/diagnostic imaging , Hearing Loss, Sudden/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Retrospective Studies
11.
Magn Reson Med ; 82(1): 237-250, 2019 07.
Article in English | MEDLINE | ID: mdl-30883886

ABSTRACT

PURPOSE: To propose a novel 3D ultrafast gradient echo-based MRI method, dubbed RASE, using quadratic-phase encoding. THEORY AND METHODS: Several characteristics of RASE, including spin behaviors, spatial resolution, SNR, and reduction of susceptibility-induced signal loss, were analytically described. A way of compensating for TE variation was suggested in the quadratic phase-encoding direction. Lemon, in vivo rat and mouse images were demonstrated at 9.4T, including a feasibility study for DCE-MRI as one of promising applications. RESULTS: RASE was successfully demonstrated by lemon and in vivo rat brain imaging, showing a good robustness to field inhomogeneity. Contribution of the quadratic phase to signal enhancement in a range of magnetic susceptibilities was also evaluated by simulation. Taking a geometric mean of 2 phantom data acquired with opposite gradient polarities effectively compensated for the effect of TE variation. Preliminary DCE-MRI results were also presented, showing that RASE could more accurately estimate Gd concentration than FLASH. CONCLUSION: RASE offers a shorter effective TE, having less sensitivity to field inhomogeneity and T2* effects, much less Nyquist ghosting or chemical-shift artifacts than gradient echo EPI (GE-EPI). We highly anticipate that RASE can be an alternative to GE-EPI in many applications, particularly those requiring high spatial and temporal resolutions in a broad volume coverage.


Subject(s)
Echo-Planar Imaging/methods , Imaging, Three-Dimensional/methods , Animals , Brain/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Phantoms, Imaging , Rats
12.
Neuroimage ; 177: 30-44, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29730495

ABSTRACT

Mouse fMRI is critically useful to investigate functions of mouse models. Until now, the somatosensory-evoked responses in anesthetized mice are often widespread and inconsistent across reports. Here, we adopted a ketamine and xylazine mixture for mouse fMRI, which is relatively new anesthetics in fMRI experiments. Forepaw stimulation frequency was optimized using cerebral blood volume (CBV)-weighted optical imaging (n = 11) and blood-oxygenation-level dependent (BOLD) fMRI with a gradient-echo time of 16 ms at 9.4 T, and 4 Hz stimulation with 0.5 ms and 0.5 mA pulses induced the highest hemodynamic response. For 20-s 4-Hz unilateral forepaw stimulation, localized BOLD activity was consistently found in the contralateral primary forelimb somatosensory cortex (S1FL), while no significant change was observed in the ipsilateral S1FL. The mean magnitude was 1.44 ±â€¯0.20% SEM (n = 9) in the contralateral S1FL and 0.69 ±â€¯0.10% in the contralateral thalamus. The variability of evoked fMRI responses across sessions was investigated by comparing with resting state fMRI (rsfMRI) functional connectivity (FC). Evoked responses in S1FL were correlated positively with rsfMRI FC between bilateral S1FL (r = 0.63 to 0.69) and negatively with FC between S1FL and the anterior cingulate cortex (r = -0.50 to -0.57), suggesting that rsfMRI FC is a good index of the evoked fMRI response and anesthetized animal condition. Finally, three weekly fMRI scans were performed in 5 mice, and localized activity was reproducibly observed in S1FL, with a success rate of 70-95%. In summary, our developed fMRI protocol can be used for mapping functions of mouse models.


Subject(s)
Anesthetics/administration & dosage , Functional Neuroimaging/methods , Ketamine/administration & dosage , Magnetic Resonance Imaging/methods , Somatosensory Cortex/physiology , Xylazine/administration & dosage , Animals , Cerebrovascular Circulation/physiology , Electric Stimulation , Forelimb/physiology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Optical Imaging , Somatosensory Cortex/diagnostic imaging
13.
Magn Reson Med ; 78(5): 1674-1682, 2017 11.
Article in English | MEDLINE | ID: mdl-28019020

ABSTRACT

PURPOSE: To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized 13 C chemical shift imaging (CSI) of mouse liver at 9.4 T. METHODS: The trade-off between the amount of flow suppression using bipolar gradients and T2* effect from static spins was simulated. A free induction decay CSI sequence with alternations between the flow-suppressed and non-flow-suppressed acquisitions for each repetition time was developed and was applied to liver tumor-bearing mice via injection of hyperpolarized [1-13 C] pyruvate. RESULTS: The in vivo results from flow suppression using the velocity-optimized bipolar gradient were comparable with the simulation results. The vascular signal was adequately suppressed and signal loss in stationary tissue was minimized. Application of the velocity-optimized bipolar gradient to tumor-bearing mice showed reduction in the vessel-derived pyruvate signal contamination, and the average lactate/pyruvate ratio increased by 0.095 (P < 0.05) in the tumor region after flow suppression. CONCLUSION: Optimization of the bipolar gradient is essential because of the short 13 C T2* and high signal in venous flow in the mouse liver. The proposed velocity-optimized bipolar gradient can suppress the vascular signal, minimizing T2*-related signal loss in stationary tissues at 9.4 T. Magn Reson Med 78:1674-1682, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Carbon Isotopes/metabolism , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Animals , Carbon Isotopes/blood , Female , Liver/diagnostic imaging , Liver/metabolism , Liver Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Phantoms, Imaging
14.
NMR Biomed ; 30(5)2017 May.
Article in English | MEDLINE | ID: mdl-28111820

ABSTRACT

An indirect method for in vivo T2 mapping of 13 C-labeled metabolites using T2 and T2 * information of water protons obtained a priori is proposed. The T2 values of 13 C metabolites are inferred using the relationship to T2 ' of coexisting 1 H and the T2 * of 13 C metabolites, which is measured using routine hyperpolarized 13 C CSI data. The concept is verified with phantom studies. Simulations were performed to evaluate the extent of T2 estimation accuracy due to errors in the other measurements. Also, bias in the 13 C T2 * estimation from the 13 C CSI data was studied. In vivo experiments were performed from the brains of normal rats and a rat with C6 glioma. Simulation results indicate that the proposed method provides accurate and unbiased 13 C T2 values within typical experimental settings. The in vivo studies found that the estimated T2 of [1-13 C] pyruvate using the indirect method was longer in tumor than in normal tissues and gave values similar to previous reports. This method can estimate localized T2 relaxation times from multiple voxels using conventional hyperpolarized 13 C CSI and can potentially be used with time resolved fast CSI.


Subject(s)
Algorithms , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Carbon-13 Magnetic Resonance Spectroscopy/methods , Glioma/metabolism , Pyruvic Acid/metabolism , Signal Processing, Computer-Assisted , Animals , Brain Neoplasms/pathology , Female , Glioma/pathology , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
15.
Magn Reson Med ; 76(2): 530-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26375762

ABSTRACT

PURPOSE: To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. METHODS: The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. RESULTS: The variation among the conductivity estimates was <15% as determined by the coefficient sensitivity tests. Compared with other signal combination methods, the proposed method yielded fewer artifacts in the conductivity estimates. CONCLUSION: MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Breast/physiology , Electric Conductivity , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Magnetics/instrumentation , Transducers , Algorithms , Breast/anatomy & histology , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Female , Humans , Image Enhancement/methods , Magnetics/methods , Reproducibility of Results , Sensitivity and Specificity
16.
J Magn Reson Imaging ; 42(2): 371-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25413153

ABSTRACT

PURPOSE: To develop and apply a method to measure in vivo electrical conductivity values using magnetic resonance imaging (MRI) in subjects with breast cancer. MATERIALS AND METHODS: A recently developed technique named MREPT (MR electrical properties tomography) together with a novel coil combination process was used to quantify the conductivity values. The overall technique was validated using a phantom study. In addition, 90 subjects were imaged (50 subjects with previously biopsy-confirmed breast tumor and 40 normal subjects), which was approved by our institutional review board (IRB). A routine clinical protocol, specifically a T2 -weighted FSE (fast spin echo) imaging data, was used for reconstruction of conductivity. RESULTS: By employing the coil combination, the relative error in the conductivity map was reduced from ~70% to 10%. The average conductivity values in breast cancers regions (0.89 ± 0.33S/m) was higher compared to parenchymal tissue (0.43 S/m, P < 0.0001) and fat (0.07 S/m, P < 0.00005) regions. Malignant cases (0.89 S/m, n = 30) showed increased conductivity compared to benign cases (0.56 S/m, n = 5) (P < 0.05). In addition, invasive cancers (0.96 S/m) showed higher mean conductivity compared to in situ cancers (0.57 S/m) (P < 0.0005). CONCLUSION: This study shows that conductivity mapping of breast cancers is feasible using a noninvasive in vivo MREPT technique combined with a coil combination process. The method may provide a tool in the MR diagnosis of breast cancer.


Subject(s)
Algorithms , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Plethysmography, Impedance/methods , Adult , Aged , Electric Conductivity , Female , Humans , Image Enhancement/methods , Middle Aged , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity
17.
Quant Imaging Med Surg ; 14(9): 6531-6542, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39281122

ABSTRACT

Background: Heavily T2-weighted fat-saturated (HT2W-FS) magnetic resonance myelography (MRM) is useful for diagnosing the cause of intracranial hypotension. Recently, deep learning-based reconstruction (DLR) has been utilized to improve image signal-to-noise ratios and sharpness while reducing artifacts, all without lengthening acquisition times. This study aimed to compare the diagnostic performance and image quality of conventional reconstruction (CR) and DLR of 3-dimensional (3D) HT2W-FS MRM applied to detecting epidural fluid in patients with clinically suspected intracranial hypotension. Methods: This retrospective study included 21 magnetic resonance myelography examinations using both CR and DLR in 21 patients who experienced orthostatic headache between April 2021 and September 2022. Quantitative image quality evaluation was performed by comparing signal-to-noise ratios at the lower thoracic levels. The image quality and artifacts were graded by three readers. The presence of epidural fluid was reported with a confidence score by two readers, and the area under the receiver operating curve, interobserver agreement, and inter-image-set agreement were evaluated. The conspicuity of the dura mater where the epidural fluid was detected was also investigated. Results: Quantitative and subjective image quality, and artifacts significantly improved with DLR (all P<0.001). Diagnostic performance of DLR was higher for both readers [reader 1: area under the curve (AUC) of CR =0.929; 95% confidence interval (CI): 0.902-0.950, AUC of DLR =0.965 (95% CI: 0.944-0.979), P=0.007; reader 2: AUC of CR =0.834 (95% CI: 0.798-0.866), AUC of DLR =0.877 (0.844-0.905), P=0.040]. Correlation with standard care of MRM in CR and DLR were both strong in reader 1 (rho =0.868-0.919, P<0.001), but was respectively strong and moderate in reader 2 (rho =0.734-0.805, P<0.001). Interobserver agreement was substantial (κ=0.708-0.762). The inter-image-set agreement was almost perfect for reader 1 (κ=0.907) and was substantial for reader 2 (κ=0.750). Dura mater conspicuity significantly improved with DLR (P<0.014, reader 1; P<0.001, readers 2 and 3). Conclusions: HT2W-FS magnetic resonance myelography with DLR demonstrates substantial improvements in image quality and may improve confidence in detecting epidural fluid.

18.
Eur J Radiol ; 175: 111471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636411

ABSTRACT

PURPOSE: With the slice thickness routinely used in elbow MRI, small or subtle lesions may be overlooked or misinterpreted as insignificant. To compare 1 mm slice thickness MRI (1 mm MRI) with deep learning reconstruction (DLR) to 3 mm slice thickness MRI (3 mm MRI) without/with DLR, and 1 mm MRI without DLR regarding image quality and diagnostic performance for elbow tendons and ligaments. METHODS: This retrospective study included 53 patients between February 2021 and January 2022, who underwent 3 T elbow MRI, including T2-weighted fat-saturated coronal 3 mm and 1 mm MRI without/with DLR. Two radiologists independently assessed four MRI scans for image quality and artefacts, and identified the pathologies of the five elbow tendons and ligaments. In 19 patients underwent elbow surgery after elbow MRI, diagnostic performance was evaluated using surgical records as a reference standard. RESULTS: For both readers, 3 mm MRI with DLR had significant higher image quality scores than 3 mm MRI without DLR and 1 mm MRI with DLR (all P < 0.01). For common extensor tendon and elbow ligament pathologies, 1 mm MRI with DLR showed the highest number of pathologies for both readers. The 1 mm MRI with DLR had the highest kappa values for all tendons and ligaments. For reader 1, 1 mm MRI with DLR showed superior diagnostic performance than 3 mm MRI without/with DLR. For reader 2, 1 mm MRI with DLR showed the highest diagnostic performance; however, there was no significant difference. CONCLUSIONS: One mm MRI with DLR showed the highest diagnostic performance for evaluating elbow tendon and ligament pathologies, with similar subjective image qualities and artefacts.


Subject(s)
Deep Learning , Elbow Joint , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Retrospective Studies , Middle Aged , Adult , Elbow Joint/diagnostic imaging , Aged , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/injuries , Ligaments/diagnostic imaging , Young Adult , Tendons/diagnostic imaging
19.
Quant Imaging Med Surg ; 14(1): 722-735, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223037

ABSTRACT

Background: While anti-peristaltic agents are beneficial for high quality magnetic resonance enterography (MRE), their use is constrained by potential side effects and increased examination complexity. We explored the potential of deep learning-based reconstruction (DLR) to compensate for the absence of anti-peristaltic agent, improve image quality and reduce artifact. This study aimed to evaluate the need for an anti-peristaltic agent in single breath-hold single-shot fast spin-echo (SSFSE) MRE and compare the image quality and artifacts between conventional reconstruction (CR) and DLR. Methods: We included 45 patients who underwent MRE for Crohn's disease between October 2021 and September 2022. Coronal SSFSE images without fat saturation were acquired before and after anti-peristaltic agent administration. Four sets of data were generated: SSFSE CR with and without an anti-peristaltic agent (CR-A and CR-NA, respectively) and SSFSE DLR with and without an anti-peristaltic agent (DLR-A and DLR-NA, respectively). Two radiologists independently reviewed the images for overall quality and artifacts, and compared the three images with DLR-A. The degree of distension and inflammatory parameters were scored on a 5-point scale in the jejunum and ileum, respectively. Signal-to-noise ratio (SNR) levels were calculated in superior mesenteric artery (SMA) and iliac bifurcation level. Results: In terms of overall quality, DLR-NA demonstrated no significant difference compared to DLR-A, whereas CR-NA and CR-A demonstrated significant differences (P<0.05, both readers). Regarding overall artifacts, reader 1 rated DLR-A slightly better than DLR-NA in four cases and rated them as identical in 41 cases (P=0.046), whereas reader 2 demonstrated no difference. Bowel distension was significantly different in the jejunum (Reader 1: P=0.046; Reader 2: P=0.008) but not in the ileum. Agreements between the images (Reader 1: ĸ=0.73-1.00; Reader 2: ĸ=1.00) and readers (ĸ=0.66 for all comparisons) on inflammation were considered good to excellent. The sensitivity, specificity, and accuracy in diagnosing inflammation in the terminal ileum were the same among DLR-NA, DLR-A, CR-NA and CR-A (94.42%, 81.83%, and 89.69 %; and 83.33%, 90.91%, and 86.21% for Readers 1 and 2, respectively). In both SMA and iliac bifurcation levels, SNR of DLR images exhibited no significant differences. CR images showed significantly lower SNR compared with DLR images (P<0.001). Conclusions: SSFSE without anti-peristaltic agents demonstrated nearly equivalent quality to that with anti-peristaltic agents. Omitting anti-peristaltic agents before SSFSE and adding DLR could improve the scanning outcomes and reduce time.

20.
J Korean Soc Radiol ; 84(6): 1309-1323, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38107694

ABSTRACT

Purpose: To assess the quality of four images obtained using single-breath-hold (SBH), single-shot fast spin-echo (SSFSE) and multiple-breath-hold (MBH) SSFSE with and without deep-learning based reconstruction (DLR) in patients with Crohn's disease. Materials and Methods: This study included 61 patients who underwent MR enterography (MRE) for Crohn's disease. The following images were compared: SBH-SSFSE with (SBH-DLR) and without (SBH-conventional reconstruction [CR]) DLR and MBH-SSFSE with (MBH-DLR) and without (MBH-CR) DLR. Two radiologists independently reviewed the overall image quality, artifacts, sharpness, and motion-related signal loss using a 5-point scale. Three inflammatory parameters were evaluated in the ileum, the terminal ileum, and the colon. Moreover, the presence of a spatial misalignment was evaluated. Signal-to-noise ratio (SNR) was calculated at two locations for each sequence. Results: DLR significantly improved the image quality, artifacts, and sharpness of the SBH images. No significant differences in scores between MBH-CR and SBH-DLR were detected. SBH-DLR had the highest SNR (p < 0.001). The inter-reader agreement for inflammatory parameters was good to excellent (κ = 0.76-0.95) and the inter-sequence agreement was nearly perfect (κ = 0.92-0.94). Misalignment artifacts were observed more frequently in the MBH images than in the SBH images (p < 0.001). Conclusion: SBH-DLR demonstrated equivalent quality and performance compared to MBH-CR. Furthermore, it can be acquired in less than half the time, without multiple BHs and reduce slice misalignments.

SELECTION OF CITATIONS
SEARCH DETAIL