Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Aust J Chem ; 76(8): 482-492, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37780415

ABSTRACT

The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/ß-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/ß-peptides contained cyclic ß-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.

2.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34558564

ABSTRACT

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Subject(s)
Escherichia coli , Peptides , Anti-Bacterial Agents/pharmacology , Lipid Bilayers , Lipids , Microscopy, Atomic Force
3.
Chem Rev ; 118(11): 5392-5487, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29793341

ABSTRACT

The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.


Subject(s)
Cell Membrane/chemistry , Interferometry/methods , Lipid Bilayers/chemistry , Liposomes/chemistry , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Membrane Proteins/chemistry , Peptides/chemistry
4.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207639

ABSTRACT

Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.


Subject(s)
Antineoplastic Agents , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Pore Forming Cytotoxic Proteins , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biofilms/growth & development , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Sheep
5.
Biochim Biophys Acta Biomembr ; 1860(2): 300-309, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29030245

ABSTRACT

Antimicrobial peptides (AMPs) interact directly with bacterial membrane lipids. Thus, changes in the lipid composition of bacterial membranes can have profound effects on the activity of AMPs. In order to understand the effect of bilayer thickness and molecular order on the activity of AMPs, the interaction of maculatin 1.1 (Mac1.1) with phosphatidylcholine (PC) model membranes composed of different monounsaturated acyl chain lengths between 14 and 22 carbons was characterised by dual polarisation interferometry (DPI) and 31P and 1H solid-state NMR techniques. The thickness and bilayer order of each PC bilayer showed a linear dependence on the acyl chain length. The binding of Mac1.1 exhibited a biphasic dependency between the amount of bound Mac1.1 and bilayer thickness, whereby the mass of bound peptide increased from C14 to C16 and then decreased from C16 to C22. Significant perturbation of 31P chemical shift anisotropy (CSA) values was only observed for DOPC (C18) and DEPC (C22), respectively. In the case of DEPC, the greater range in CSA indicated different headgroup conformations or environments in the presence of Mac1.1. Overall, the results indicated that there is a significant change in the bilayer order upon binding of Mac1.1 and this change occurred in a co-operative manner at higher concentrations of Mac1.1 with increasing bilayer thickness and order. Overall, an optimum bilayer thickness and lipid order may be required for effective membrane perturbation by Mac1.1 and increasing the bilayer thickness and order may counteract the activity of Mac1.1 and play a role in antimicrobial resistance to AMPs.


Subject(s)
Amphibian Proteins/metabolism , Antimicrobial Cationic Peptides/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Amino Acid Sequence , Amphibian Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Interferometry/methods , Kinetics , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Protein Binding
6.
J Biol Chem ; 291(22): 11829-42, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27026701

ABSTRACT

The µO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay.


Subject(s)
Analgesics/pharmacology , Cell Membrane/metabolism , Conotoxins/pharmacology , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Pain/prevention & control , Amino Acid Sequence , Animals , Behavior, Animal/drug effects , Crystallography, X-Ray , Electrophysiology , HEK293 Cells , Humans , Liposomes , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , NAV1.8 Voltage-Gated Sodium Channel/chemistry , NAV1.8 Voltage-Gated Sodium Channel/genetics , Pain/chemically induced , Protein Conformation , Sequence Homology, Amino Acid
7.
Biochim Biophys Acta ; 1858(8): 1841-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27163492

ABSTRACT

We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Lipid Bilayers/chemistry , Amino Acid Sequence , Biotinylation , Birefringence , Carrier Proteins/pharmacology , Dimyristoylphosphatidylcholine/chemistry , Gels , Interferometry , Kinetics , Liposomes/chemistry , Membrane Lipids/chemistry , Models, Chemical , Peptide Fragments/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Protein Binding , Structure-Activity Relationship
8.
Biochim Biophys Acta ; 1858(6): 1099-109, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26896695

ABSTRACT

Plant defensins interact with phospholipids in bilayers as part of their cytotoxic activity. Solanaceous class II defensins with the loop 5 sequence pattern "S-[KR]-[ILVQ]-[ILVQ]-[KR]-[KR]" interact with PI(4,5)P2. Here, the prototypical defensin of this class, NaD1, is used to characterise the biophysical interactions between these defensins and phospholipid bilayers. Binding of NaD1 to bilayers containing PI(4,5)P2 occurs rapidly and the interaction is very strong. Dual polarisation interferometry revealed that NaD1 does not dissociate from bilayers containing PI(4,5)P2. Binding of NaD1 to bilayers with or without PI(4,5)P2 induced disorder in the bilayer. However, permeabilisation assays revealed that NaD1 only permeabilised liposomes with PI(4,5)P2 in the bilayer, suggesting a role for this protein-lipid interaction in the plasma membrane permeabilising activity of this defensin. No defensins in the available databases have the PI(4,5)P2 binding sequence outside the solanaceous class II defensins, leading to the hypothesis that PI(4,5)P2 binding co-evolved with the C-terminal propeptide to protect the host cell against the effects of the tight binding of these defensins to their cognate lipid as they travel along the secretory pathway. This data has allowed us to develop a new model to explain how this class of defensins permeabilises plasma membranes to kill target cells.


Subject(s)
Arabidopsis Proteins/physiology , Membrane Lipids/metabolism , NADH Dehydrogenase/physiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Lipid Bilayers , Molecular Sequence Data , NADH Dehydrogenase/chemistry , Protein Binding , Sequence Homology, Amino Acid
9.
Angew Chem Int Ed Engl ; 56(29): 8495-8499, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28513074

ABSTRACT

Δ-Myrtoxin-Mp1a (Mp1a), a 49-residue heterodimeric peptide from the venom of Myrmecia pilosula, comprises a 26-mer A chain and a 23-mer B chain connected by two disulfide bonds in an antiparallel arrangement. Combination of the individual synthetic chains through aerial oxidation remarkably resulted in the self-assembly of Mp1a as a homogenous product without the need for directed disulfide-bond formation. NMR analysis revealed a well-defined, unique structure containing an antiparallel α-helix pair. Dual polarization interferometry (DPI) analysis showed strong interaction with supported lipid bilayers and insertion within the bilayers. Mp1a caused non-specific Ca2+ influx in SH-SY5Y cells with a half maximal effective concentration (EC50 ) of 4.3 µm. Mp1a also displayed broad-spectrum antimicrobial activity, with the highest potency against Gram-negative Acinetobacter baumannii (MIC 25 nm). Intraplantar injection (10 µm) in mice elicited spontaneous pain and mechanical allodynia. Single- and two-chain mimetics of Mp1a revealed functional selectivity.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Hyperalgesia/drug therapy , Pain/drug therapy , Peptides/pharmacology , Venoms/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Ants , Calcium/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Mice , Microbial Sensitivity Tests , Models, Molecular , Peptides/administration & dosage , Peptides/chemistry
10.
Biochim Biophys Acta ; 1848(9): 1868-85, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26009270

ABSTRACT

Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein-membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid-protein interactions.


Subject(s)
Biosensing Techniques/methods , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Cell Membrane/metabolism , Interferometry/methods , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Binding , Reproducibility of Results , Surface Plasmon Resonance/methods
11.
Biochim Biophys Acta ; 1848(10 Pt A): 2277-89, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26079051

ABSTRACT

The membrane interaction of peptides derived from maculatin 1.1 and caerin 1.1, with the sequence motif of N and C termini of maculatin 1.1, was compared in order to understand the role of these common sequence motifs, which encompass critical proline residues, on peptide secondary structure and on membrane binding and disruption in zwitterionic and anionic membranes. The peptides incorporated a single substitution with lysine or deletion of the central region to mimic the length of the antimicrobial peptides, citropin 1.1 and aurein 1.2. The impact of these changes in the sequence, length and physicochemical properties, on lytic activity and structure was assessed by dye-release from lipid vesicles and the change in the bilayer order as a function of membrane-bound peptide mass. All peptides adopted similar degrees of helical structure in both membrane systems. In addition, all peptide analogues were less active than either maculatin 1.1 or caerin 1.1 in dye release assays. The membrane binding was analyzed by dual polarization interferometry and the results showed that membrane binding was significantly affected by changes in the hydrophobic environment of Pro-15. Moreover, changes in the relative distribution of charge and hydrophobicity flanking Pro-15 also caused significant changes to the membrane order. Overall, the proline residue plays an important role in inducing a peptide structure that enhances the activity of these antimicrobial peptides.


Subject(s)
Amphibian Proteins/chemistry , Amphibian Proteins/ultrastructure , Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Proline/chemistry , Sex Attractants/chemistry , Binding Sites , Computer Simulation , Models, Chemical , Models, Molecular , Permeability , Protein Binding , Protein Conformation , Surface-Active Agents/chemistry
12.
Biochim Biophys Acta ; 1838(9): 2205-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24593995

ABSTRACT

The membrane destabilising properties of the antimicrobial peptides (AMP) aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1, have been studied by dual polarisation interferometry (DPI). The overall process of peptide induced membrane destabilisation was examined by the changes in bilayer order as a function of membrane-bound peptide mass per unit area and revealed three different modes of action. Aurein 1.2 was the only peptide that significantly destabilised the neutral membrane (DMPC), while all four peptides induced destabilisation of the negatively charged membrane (DMPC/DMPG). On DMPC, citropin 1.1, maculatin 1.1 and caerin 1.1 bound irreversibly at low concentrations but caused a reversible drop in the bilayer order. In contrast to DMPC/DMPG, these three peptides caused a mass drop at the higher concentrations, which may correspond to insertion and bilayer expansion. The critical level of bound peptide necessary to induce membrane destabilisation (peptide:lipid ratio) was determined and correlated with peptide structure. As the most lytic peptide, aurein 1.2 adsorbed strongly prior to dissolution of the bilayer. In contrast, the binding of citropin 1.1, maculatin 1.1 and caerin 1.1 needed to reach a critical level prior to insertion into the membrane and incremental expansion and disruption. Our results demonstrate that sequential events can be monitored in real-time under fluidic conditions to elucidate the complex molecular mechanism of AMP action. In particular, the analysis of birefringence in real time allows the description of a detailed mechanistic model of the impact of peptides on the membrane bilayer order. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Subject(s)
Amphibian Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Amphibian Proteins/pharmacology , Animals , Antimicrobial Cationic Peptides/pharmacology , Anura , Australia , Cell Membrane/chemistry , Cell Membrane/drug effects , Hydrophobic and Hydrophilic Interactions , Interferometry , Lipid Bilayers/chemistry
13.
Chem Sci ; 15(10): 3408-3427, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38455013

ABSTRACT

It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.

14.
Biophys J ; 104(7): 1495-507, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23561526

ABSTRACT

The role of proline in the disruption of membrane bilayer structure upon antimicrobial peptide (AMP) binding was studied. Specifically, (31)P and (2)H solid-state NMR and dual polarization interferometry (DPI) were used to analyze the membrane interactions of three AMPs: maculatin 1.1 and two analogs in which Pro-15 is replaced by Gly and Ala. For NMR, deuterated dimyristoylphosphatidylcholine (d54-DMPC) and d54-DMPC/dimyristoylphosphatidylglycerol (DMPG) were used to mimic eukaryotic and prokaryotic membranes, respectively. In fluid-phase DMPC bilayer systems, the peptides interacted primarily with the bilayer surface, with the native peptide having the strongest interaction. In the mixed DMPC/DMPG bilayers, maculatin 1.1 induced DMPG phase separation, whereas the analogs promoted the formation of isotropic and lipid-enriched phases with an enhanced effect relative to the neutral DMPC bilayers. In gel-phase DMPC vesicles, the native peptide disrupted the bilayer via a surface mechanism, and the effect of the analogs was similar to that observed in the fluid phase. Real-time changes in bilayer order were examined via DPI, with changes in bilayer birefringence analyzed as a function of the peptide mass bound to the bilayer. Although all three peptides decreased the bilayer order as a function of bound concentration, maculatin 1.1 caused the largest change in bilayer structure. The NMR data indicate that maculatin 1.1 binds predominantly at the surface regions of the bilayer, and both NMR and DPI results indicate that this binding leads to a drop in bilayer order. Overall, the results demonstrate that the proline at residue 15 plays a central role in the membrane interaction of maculatin 1.1 by inducing a significant change in membrane order and affecting the ability of the bilayer to recover from structural changes induced by the binding and insertion of the peptide.


Subject(s)
Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Proline/metabolism , Amino Acid Sequence , Amino Acid Substitution , Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Molecular Sequence Data , Phospholipids/metabolism , Surface Properties
15.
Biochim Biophys Acta ; 1818(9): 2354-61, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22538355

ABSTRACT

The membrane interaction of the cyclotide kalata B1, an all-d-analogue and a single alanine substituted analogue (G6A), was studied by surface plasmon resonance (SPR) and atomic force microscopy (AFM). Kalata B1 showed a strong binding selectivity for dimyristoyl-phosphatidylethanolamine (DMPE) compared to dimyristoyl-phoshatidylcholine (DMPC)-containing lipids. However, when the interaction was visualized by AFM the peptide interacted with DMPC and DMPE in a similar manner. There was no apparent change in membrane morphology with either lipid, suggesting that kalata B1 does not act via a carpet-like disruption mechanism. The d-analogue showed similar binding by SPR and the same strong selectivity for DMPE, indicating that the membrane-interaction and lipid selectivity are not stereo-specific. SPR studies of the G6A analogue revealed that it interacted in a similar way to kalata B1 on the DMPC containing lipids, but showed no increased response on the DMPE containing lipids observed for kalata B1 and d-kalata B1. These results indicate that the Gly6 residue directly influences membrane binding as it is located near a putative membrane interacting hydrophobic patch. Overall, the data suggest that very small changes in amino acid composition (with no change in conformation) can influence specific self-association in combination with membrane binding and mediate the activity of kalata B1.


Subject(s)
Cyclotides/chemistry , Phosphatidylethanolamines/chemistry , Amino Acid Sequence , Cell Membrane/metabolism , Circular Dichroism , Dimyristoylphosphatidylcholine/chemistry , Disulfides/chemistry , Dose-Response Relationship, Drug , Kinetics , Lipids/chemistry , Liposomes/chemistry , Membranes, Artificial , Microscopy, Atomic Force/methods , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Surface Plasmon Resonance , Time Factors
16.
Anal Chem ; 85(19): 9296-304, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23998643

ABSTRACT

Kinetic analysis of peptide-membrane interactions generally involves a curve fitting process with no information about what the different curves may physically correspond to. Given the multistep process of peptide-membrane interactions, a computational method that utilizes physical parameters that relate to both peptide binding and membrane structure would provide new insight into this complex process. In this study, kinetic models accounting for two-state and three-state mechanisms were fitted to our previously reported simultaneous real-time measurements of mass and birefringence during the binding and dissociation of the peptide HPA3 (Hirst, D.; Lee, T.-H.; Swann, M.; Unabia, S.; Park, Y.; Hahm, K.-S.; Aguilar, M. Eur. Biophys. J. 2011, 40, 503-514); significantly, the mass and birefringence are constrained by the same set of kinetic constants, allowing the unification of peptide binding patterns with membrane structure changes. For the saturated phospholipid dimyristoyl-phosphatidylcholine (DMPC) the two-state model was sufficient to account for the observed changes in mass and birefringence, whereas for the unsaturated phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) the two-state model was found to be inadequate and a three-state model gave a significantly better fit. The third state of interaction for POPC was found to disrupt the bilayer much more than the previous two states. We propose a hypothesis for the mechanism of membrane permeabilization based on the results featuring a loosely bound first state, a tightly bound second state, and a highly membrane-disrupting third state. The results demonstrate the importance of the difference in membrane fluidity between the gel phase DMPC and the liquid crystal phase POPC for peptide-membrane interactions and establish the combination of DPI and kinetic modeling as a powerful tool for revealing features of peptide-membrane interaction mechanisms, including intermediate states between initial binding and full membrane disruption.


Subject(s)
Peptide Fragments/chemistry , Phospholipids/chemistry , Ribosomal Proteins/chemistry , Kinetics , Models, Chemical , Molecular Structure , Molecular Weight
17.
Eur Biophys J ; 42(1): 47-59, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22354331

ABSTRACT

The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH(2)) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC-dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC-DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides.


Subject(s)
Amphibian Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Dimyristoylphosphatidylcholine/chemistry , Phosphatidylglycerols/chemistry , Static Electricity
18.
Nanoscale ; 15(36): 14971-14980, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37661822

ABSTRACT

Self-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-ß3-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel. We therefore assessed the self-assembling lipidated-ß3-peptides for cell-penetrating properties in mesenchymal stems cells (MSC) using fluorescence microscopy and membrane association with surface plasmon resonance spectroscopy (SPR). The results demonstrated that lipidated ß3-peptides penetrate the MSC plasma membrane and localise to the mitochondrial network. While self-assembling lipopeptide hydrogels have shown tremendous potential for delivery of therapeutics, further optimisation may be required to minimise the membrane uptake of the lipidated-ß3-peptides for cell encapsulation applications.


Subject(s)
Cell Culture Techniques , Lipopeptides , Biological Transport , Cell Membrane , Hydrogels
19.
Biochemistry ; 51(6): 1070-8, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22283417

ABSTRACT

Alzheimer's disease (AD) is a common form of dementia, which is characterized by the presence of extracellular amyloid plaques comprising the amyloid ß peptide (Aß). Although the mechanism underlying AD pathogenesis remains elusive, accumulating evidence suggests that the process of amyloid fibril formation is a surface-mediated event, which plays an important role in AD onset and progression. In this study, the mechanism of Aß aggregation on hydrophobic surfaces was investigated with dual polarization interferometry (DPI), which provides real-time information on early stages of the aggregation process. Aggregation was monitored on a hydrophobic C18 surface and a polar silicon oxynitride surface. The DPI results showed a characteristic Aß aggregation pattern involving a decrease in the density of Aß at the surface followed by an increase in the thickness on the hydrophobic C18 chip. Most importantly, the DPI measurements provided unique information on the early stages of Aß aggregation, which is characterized by the presence of initially slow nucleus formation process followed by exponential fibril elongation. The dimensions of the putative nucleus corresponded to a thickness of ∼5 nm for both Aß40 and Aß42, which may represent about 10-15 molecules. The results thus support the nucleation-dependent polymerization model as indicated by the presence of a nucleation phase followed by an exponential growth phase. These results are the first reported measurements of the real-time changes in Aß molecular structure during the early stages of amyloid formation at the nanometer level.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Alzheimer Disease/metabolism , Amyloid/biosynthesis , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Biosensing Techniques , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Peptide Fragments/metabolism , Protein Array Analysis , Protein Binding , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Surface Properties
20.
Langmuir ; 28(5): 2357-67, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22201548

ABSTRACT

The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the ß-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.


Subject(s)
Lactalbumin/chemistry , Oils/chemistry , Water/chemistry , Adsorption , Emulsions/chemistry , Models, Molecular , Protein Conformation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL