Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Br J Cancer ; 130(7): 1096-1108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341509

ABSTRACT

BACKGROUND: Pancreatic neuroendocrine tumors (PNETs) with low microvessel density and fibrosis often exhibit clinical aggressiveness. Given the contribution of cancer-associated fibroblasts (CAFs) to the hypovascular fibrotic stroma in pancreatic ductal adenocarcinoma, investigating whether CAFs play a similar role in PNETs becomes imperative. In this study, we investigated the involvement of CAFs in PNETs and their effects on clinical outcomes. METHODS: We examined 79 clinical PNET specimens to evaluate the number and spatial distribution of α-smooth muscle actin (SMA)-positive cells, which are indicative of CAFs. Then, the findings were correlated with clinical outcomes. In vitro and in vivo experiments were conducted to assess the effects of CAFs (isolated from clinical specimens) on PNET metastasis and growth. Additionally, the role of the stromal-cell-derived factor 1 (SDF1)-AGR2 axis in mediating communication between CAFs and PNET cells was investigated. RESULTS: αSMA-positive and platelet-derived growth factor-α-positive CAFs were detected in the hypovascular stroma of PNET specimens. A higher abundance of α-SMA-positive CAFs within the PNET stroma was significantly associated with a higher level of clinical aggressiveness. Notably, conditioned medium from PNET cells induced an inflammatory phenotype in isolated CAFs. These CAFs promoted PNET growth and metastasis. Mechanistically, PNET cells secreted interleukin-1, which induced the secretion of SDF1 from CAFs. This cascade subsequently elevated AGR2 expression in PNETs, thereby promoting tumor growth and metastasis. The downregulation of AGR2 in PNET cells effectively suppressed the CAF-mediated promotion of PNET growth and metastasis. CONCLUSION: CAFs drive the growth and metastasis of aggressive PNETs. The CXCR4-SDF1 axis may be a target for antistromal therapy in the treatment of PNET. This study clarifies mechanisms underlying PNET aggressiveness and may guide future therapeutic interventions targeting the tumor microenvironment.


Subject(s)
Cancer-Associated Fibroblasts , Neuroectodermal Tumors, Primitive , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Neuroendocrine Tumors/pathology , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Neuroectodermal Tumors, Primitive/metabolism , Neuroectodermal Tumors, Primitive/pathology , Tumor Microenvironment , Fibroblasts/metabolism , Mucoproteins/metabolism , Mucoproteins/therapeutic use , Oncogene Proteins/metabolism
2.
Cell ; 136(2): 352-63, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19167335

ABSTRACT

Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.


Subject(s)
Protein Tyrosine Phosphatases/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Humans , Models, Molecular , Protein Structure, Tertiary , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Sequence Alignment , Structure-Activity Relationship
3.
Br J Clin Pharmacol ; 88(9): 4199-4210, 2022 09.
Article in English | MEDLINE | ID: mdl-35474585

ABSTRACT

AIMS: Several observational studies have examined the potential protective effect of angiotensin-converting enzyme inhibitor (ACE-I) use on the risk of age-related macular degeneration (AMD) and have reported contradictory results owing to confounding and time-related biases. We aimed to assess the risk of AMD in a base cohort of patients aged 40 years and above with hypertension among new users of ACE-I compared to an active comparator cohort of new users of calcium channel blockers (CCB) using data obtained from IQVIA Medical Research Data, a primary care database in the UK. METHODS: In this study, 53 832 and 43 106 new users of ACE-I and CCB were included between 1995 and 2019, respectively. In an on-treatment analysis, patients were followed up from the time of index drug initiation to the date of AMD diagnosis, loss to follow-up, discontinuation or switch to the comparator drug. A comprehensive range of covariates were used to estimate propensity scores to weight and match new users of ACE-I and CCB. Standardized mortality ratio weighted Cox proportional hazards model was used to estimate hazard ratios of developing AMD. RESULTS: During a median follow-up of 2 years (interquartile range 1-5 years), the incidence rate of AMD was 2.4 (95% confidence interval 2.2-2.6) and 2.2 (2.0-2.4) per 1000 person-years among the weighted new users of ACE-I and CCB, respectively. There was no association of ACE-I use on the risk of AMD compared to CCB use in either the propensity score weighted or matched, on-treatment analysis (adjusted hazard ratio: 1.07 [95% confidence interval 0.90-1.27] and 0.87 [0.71-1.07], respectively). CONCLUSION: We found no evidence that the use of ACE-I is associated with risk of AMD in patients with hypertension.


Subject(s)
Hypertension , Macular Degeneration , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Calcium Channel Blockers/therapeutic use , Cohort Studies , Humans , Hypertension/complications , Hypertension/drug therapy , Hypertension/epidemiology , Incidence , Macular Degeneration/drug therapy , Macular Degeneration/epidemiology
4.
Curr Opin Ophthalmol ; 33(5): 399-406, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35916569

ABSTRACT

PURPOSE OF REVIEW: In this review, we consider the challenges of creating a trusted resource for real-world data in ophthalmology, based on our experience of establishing INSIGHT, the UK's Health Data Research Hub for Eye Health and Oculomics. RECENT FINDINGS: The INSIGHT Health Data Research Hub maximizes the benefits and impact of historical, patient-level UK National Health Service (NHS) electronic health record data, including images, through making it research-ready including curation and anonymisation. It is built around a shared 'north star' of enabling research for patient benefit. INSIGHT has worked to establish patient and public trust in the concept and delivery of INSIGHT, with efficient and robust governance processes that support safe and secure access to data for researchers. By linking to systemic data, there is an opportunity for discovery of novel ophthalmic biomarkers of systemic diseases ('oculomics'). Datasets that provide a representation of the whole population are an important tool to address the increasingly recognized threat of health data poverty. SUMMARY: Enabling efficient, safe access to routinely collected clinical data is a substantial undertaking, especially when this includes imaging modalities, but provides an exceptional resource for research. Research and innovation built on inclusive real-world data is an important tool in ensuring that discoveries and technologies of the future may not only favour selected groups, but also work for all patients.


Subject(s)
State Medicine , Trust , Electronic Health Records , Humans , United Kingdom
5.
PLoS Biol ; 15(2): e2001387, 2017 02.
Article in English | MEDLINE | ID: mdl-28199324

ABSTRACT

Discovering new medicines is difficult and increasingly expensive. The pharmaceutical industry has responded to this challenge by embracing open innovation to access external ideas. Historically, partnerships were usually bilateral, and the drug discovery process was shrouded in secrecy. This model is rapidly changing. With the advent of the Internet, drug discovery has become more decentralised, bottom-up, and scalable than ever before. The term open innovation is now accepted as just one of many terms that capture different but overlapping levels of openness in the drug discovery process. Many pharmaceutical companies recognise the advantages of revealing some proprietary information in the form of results, chemical tools, or unsolved problems in return for valuable insights and ideas. For example, such selective revealing can take the form of openly shared chemical tools to explore new biological mechanisms or by publicly admitting what is not known in the form of an open call. The essential ingredient for addressing these problems is access to the wider scientific crowd. The business of crowdsourcing, a form of outsourcing in which individuals or organisations solicit contributions from Internet users to obtain ideas or desired services, has grown significantly to fill this need and takes many forms today. Here, we posit that open-innovation approaches are more successful when they establish a reliable framework for converting creative ideas of the scientific crowd into practice with actionable plans.


Subject(s)
Creativity , Science , Biomedical Research , Cooperative Behavior , Drug Discovery , Humans , Organizational Innovation
6.
Mol Cell ; 48(5): 747-59, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23123197

ABSTRACT

NPGPx is a member of the glutathione peroxidase (GPx) family; however, it lacks GPx enzymatic activity due to the absence of a critical selenocysteine residue, rendering its function an enigma. Here, we show that NPGPx is a newly identified stress sensor that transmits oxidative stress signals by forming the disulfide bond between its Cys57 and Cys86 residues. This oxidized form of NPGPx binds to glucose-regulated protein (GRP)78 and forms covalent bonding intermediates between Cys86 of NPGPx and Cys41/Cys420 of GRP78. Subsequently, the formation of the disulfide bond between Cys41 and Cys420 of GRP78 enhances its chaperone activity. NPGPx-deficient cells display increased reactive oxygen species, accumulated misfolded proteins, and impaired GRP78 chaperone activity. Complete loss of NPGPx in animals causes systemic oxidative stress, increases carcinogenesis, and shortens life span. These results suggest that NPGPx is essential for releasing excessive ER stress by enhancing GRP78 chaperone activity to maintain physiological homeostasis.


Subject(s)
Carrier Proteins/metabolism , Endoplasmic Reticulum Stress , Heat-Shock Proteins/metabolism , Oxidative Stress , Peroxidases/metabolism , Proteostasis Deficiencies/enzymology , Signal Transduction , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cysteine , DNA Damage , Disulfides/metabolism , Dose-Response Relationship, Drug , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Fibroblasts/enzymology , Fibroblasts/pathology , Glutathione Peroxidase , Heat-Shock Proteins/genetics , Homeostasis , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Mutation , Oxidants/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/genetics , Peroxidases/genetics , Protein Binding , Protein Folding , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Time Factors , Transfection
7.
Ann Surg Oncol ; 26(3): 807-814, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30569296

ABSTRACT

BACKGROUND: Thrombospondin-2 (TSP-2) has been reported as an early diagnostic marker for pancreatic ductal adenocarcinoma (PDAC) in Caucasian populations. This study was designed to validateTSP-2 as a diagnostic marker in a large Taiwan cohort and to investigate the association of TSP-2 with the clinical outcomes of PDAC patients. METHODS: The serum TSP-2 levels in 263 PDAC patients and 230 high-risk individuals (HRIs) were measured via an enzyme-linked immunosorbent assay. The sensitivity, specificity, and accuracy of TSP-2 as a diagnostic marker to discriminating PDAC patients from HRIs and correlations between TSP-2 levels and prognosis of PDAC patients were analyzed. RESULTS: Serum TSP-2 levels were significantly higher in patients with PDAC (44.90 ± 40.70 ng/ml) than in the HRIs (17.52 ± 6.23 ng/ml). At a level of ≥ 29.8 ng/ml, TSP-2 exhibited 100% specificity, 55.9% sensitivity, 100% positive predictive value (PPV), and 66.5% negative predictive value (NPV) for discriminating PDAC patients from HRIs. The Cox regression analysis showed that higher serum TSP-2 levels were significantly associated with poor outcomes in PDAC patients (hazard ratio = 1.54, 95% confidence interval = 1.143-2.086, P = 0.005). Combining the carbohydrate antigen 19-9 (CA19-9) (cutoff value of 62.0 U/ml) and TSP-2 (cutoff value of 29.8 ng/ml) levels yielded 98.7% specificity, 90.5% sensitivity, 98.8% PPV, and 90.1% NPV for discriminating patients with PDAC from HRIs. CONCLUSIONS: TSP-2 is a highly specific diagnostic marker and an independent prognostic marker in patients with PDAC. A combined biomarker panel, including TSP-2 and CA19-9, may facilitate future PDAC screening.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/diagnosis , Pancreatic Neoplasms/diagnosis , Thrombospondins/blood , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/therapy , Case-Control Studies , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/therapy , Prognosis , Survival Rate
8.
PLoS Biol ; 13(6): e1002164, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26042736

ABSTRACT

There is a scarcity of novel treatments to address many unmet medical needs. Industry and academia are finally coming to terms with the fact that the prevalent models and incentives for innovation in early stage drug discovery are failing to promote progress quickly enough. Here we will examine how an open model of precompetitive public-private research partnership is enabling efficient derisking and acceleration in the early stages of drug discovery, whilst also widening the range of communities participating in the process, such as patient and disease foundations.


Subject(s)
Drug Discovery , Biomedical Research , Diffusion of Innovation , Information Dissemination , Off-Label Use
9.
Nucleic Acids Res ; 43(19): 9393-404, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26446990

ABSTRACT

Non-selenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx or GPx7) is an oxidative stress sensor that modulates the antioxidative activity of its target proteins through intermolecular disulfide bond formation. Given NPGPx's role in protecting cells from oxidative damage, identification of the oxidative stress-induced protein complexes, which forms with key stress factors, may offer novel insight into intracellular reactive oxygen species homeostasis. Here, we show that NPGPx forms a disulfide bond with the translational regulator cytoplasmic polyadenylation element-binding protein 2 (CPEB2) that results in negative regulation of hypoxia-inducible factor 1-alpha (HIF-1α) RNA translation. In NPGPx-proficient cells, high oxidative stress that disrupts this bonding compromises the association of CPEB2 with HIF-1α RNA, leading to elevated HIF-1α RNA translation. NPGPx-deficient cells, in contrast, demonstrate increased HIF-1α RNA translation under normoxia with both impaired induction of HIF-1α synthesis and blunted HIF-1α-programmed transcription following oxidative stress. Together, these results reveal a molecular mechanism for how NPGPx mediates CPEB2-controlled HIF-1α RNA translation in a redox-sensitive manner.


Subject(s)
Carrier Proteins/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Oxidative Stress , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Animals , Carrier Proteins/genetics , Cells, Cultured , Cysteine/analysis , Disulfides/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , Rats , Transcription, Genetic
10.
Clin Chem ; 62(3): 505-13, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26861552

ABSTRACT

BACKGROUND: Characterization of circulating tumor cells (CTCs) has been used to provide prognostic, predictive, and pharmacodynamic information in many different cancers. However, the clinical significance of CTCs and circulating tumor microemboli (CTM) in patients with pancreatic ductal adenocarcinoma (PDAC) has yet to be determined. METHODS: In this prospective study, CTCs and CTM were enumerated in the peripheral blood of 63 patients with PDAC before treatment using anti-EpCAM (epithelial cell adhesion molecule)-conjugated supported lipid bilayer-coated microfluidic chips. Associations of CTCs and CTM with patients' clinical factors and prognosis were determined. RESULTS: CTCs were abundant [mean (SD), 70.2 (107.6)] and present in 81% (51 of 63) of patients with PDAC. CTM were present in 81% (51 of 63) of patients with mean (SD) 29.7 (1101.4). CTM was an independent prognostic factor of overall survival (OS) and progression free survival (PFS). Patients were stratified into unfavorable and favorable CTM groups on the basis of CTM more or less than 30 per 2 mL blood, respectively. Patients with baseline unfavorable CTM, compared with patients with favorable CTM, had shorter PFS (2.7 vs 12.1 months; P < 0.0001) and OS (6.4 vs 19.8 months; P < 0.0001). Differences persisted if we stratified patients into early and advanced diseases. The number of CTM before treatment was an independent predictor of PFS and OS after adjustment for clinically significant factors. CONCLUSIONS: The number of CTM, instead of CTCs, before treatment is an independent predictor of PFS and OS in patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnosis , Neoplastic Cells, Circulating , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/physiopathology , Female , Humans , Male , Prognosis , Prospective Studies , Regression Analysis
11.
Proc Natl Acad Sci U S A ; 110(30): 12331-6, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23836662

ABSTRACT

The circadian clock gene Period2 (PER2) has been suggested to be a tumor suppressor. However, detailed mechanistic evidence has not been provided to support this hypothesis. We found that loss of PER2 enhanced invasion and activated expression of epithelial-mesenchymal transition (EMT) genes including TWIST1, SLUG, and SNAIL. This finding was corroborated by clinical observation that PER2 down-regulation was associated with poor prognosis in breast cancer patients. We further demonstrated that PER2 served as a transcriptional corepressor, which recruited polycomb proteins EZH2 and SUZ12 as well as HDAC2 to octamer transcription factor 1 (OCT1) (POU2F1) binding sites of the TWIST1 and SLUG promoters to repress expression of these EMT genes. Hypoxia, a condition commonly observed in tumors, caused PER2 degradation and disrupted the PER2 repressor complex, leading to activation of EMT gene expression. This result was further supported by clinical data showing a significant negative correlation between hypoxia and PER2. Thus, our findings clearly demonstrate the tumor suppression function of PER2 and elucidate a pathway by which hypoxia promotes EMT via degradation of PER2.


Subject(s)
Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation/genetics , Hypoxia/genetics , Organic Cation Transporter 1/physiology , Period Circadian Proteins/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Down-Regulation , Female , Humans , Promoter Regions, Genetic , Protein Processing, Post-Translational , Up-Regulation/genetics
12.
J Biol Chem ; 289(24): 16727-35, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24770417

ABSTRACT

Mammalian mitochondrial mRNA (mt-mRNA) transcripts are polyadenylated at the 3' end with different lengths. The SUV3·PNPase complex and mtPAP have been shown to degrade and polyadenylate mt mRNA, respectively. How these two opposite actions are coordinated to modulate mt-mRNA poly(A) lengths is of interest to pursue. Here, we demonstrated that a fraction of the SUV3·PNPase complex interacts with mitochondrial polyadenylation polymerase (mtPAP) under low mitochondrial matrix inorganic phosphate (Pi) conditions. In vitro binding experiments using purified proteins suggested that SUV3 binds to mtPAP through the N-terminal region around amino acids 100-104, distinctive from the C-terminal region around amino acids 510-514 of SUV3 for PNPase binding. mtPAP does not interact with PNPase directly, and SUV3 served as a bridge capable of simultaneously binding with mtPAP and PNPase. The complex consists of a SUV3 dimer, a mtPAP dimer, and a PNPase trimer, based on the molecular sizing experiments. Mechanistically, SUV3 provides a robust single strand RNA binding domain to enhance the polyadenylation activity of mtPAP. Furthermore, purified SUV3·PNPase·mtPAP complex is capable of lengthening or shortening the RNA poly(A) tail lengths in low or high Pi/ATP ratios, respectively. Consistently, the poly(A) tail lengths of mt-mRNA transcripts can be lengthened or shortened by altering the mitochondrial matrix Pi levels via selective inhibition of the electron transport chain or ATP synthase, respectively. Taken together, these results suggested that SUV3·PNPase·mtPAP form a transient complex to modulate mt-mRNA poly(A) tail lengths in response to cellular energy changes.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA-Directed RNA Polymerases/metabolism , Exoribonucleases/metabolism , Mitochondrial Proteins/metabolism , RNA, Messenger/metabolism , Binding Sites , DEAD-box RNA Helicases/chemistry , DNA-Directed RNA Polymerases/chemistry , Energy Metabolism , Exoribonucleases/chemistry , HEK293 Cells , Humans , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Phosphates/metabolism , Polyadenylation , Protein Binding , Protein Multimerization , RNA, Mitochondrial
13.
Nucleic Acids Res ; 41(3): 1533-43, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23241391

ABSTRACT

We reported that non-targeting siRNA (NT-siRNA) stress induces non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) expression to cooperate with exoribonuclease XRN2 for releasing the stress [Wei,P.C., Lo,W.T., Su,M.I., Shew,J.Y. and Lee,W.H. (2011) Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res., 40, 323-332]. However, how NT-siRNA stress inducing NPGPx expression remains elusive. In this communication, we showed that the proximal promoter of NPGPx contained a mixed G-quadruplex (G4) structure, and disrupting the structure diminished NT-siRNA induced NPGPx promoter activity. We also demonstrated that nucleolin (NCL) specifically bonded to the G4-containing sequences to replace the originally bound Sp1 at the NPGPx promoter on NT-siRNA stress. Consistently, overexpression of NCL further increased NPGPx promoter activity, whereas depletion of NCL desensitized NPGPx promoter to NT-siRNA stress. These results suggest that the cis-element with mixed G4 structure at the NPGPx promoter plays an essential role for its transactivation mediated by NCL to release cells from NT-siRNA stress.


Subject(s)
G-Quadruplexes , Peroxidases/genetics , Phosphoproteins/metabolism , Promoter Regions, Genetic , RNA, Small Interfering , RNA-Binding Proteins/metabolism , Stress, Physiological/genetics , Transcriptional Activation , Binding Sites , Cell Line , GC Rich Sequence , Humans , Peroxidases/metabolism , Sp1 Transcription Factor/metabolism , Up-Regulation , Nucleolin
14.
J Biol Chem ; 288(48): 34403-13, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24129578

ABSTRACT

Hec1 and Nuf2, core components of the NDC80 complex, are essential for kinetochore-microtubule attachment and chromosome segregation. It has been shown that both Hec1 and Nuf2 utilize their coiled-coil domains to form a functional dimer; however, details of the consequential significance and structural requirements to form the dimerization interface have yet to be elucidated. Here, we showed that Hec1 required three contiguous heptad repeats from Leu-324 to Leu-352, but not the entire first coiled-coil domain, to ensure overall stability of the NDC80 complex through direct interaction with Nuf2. Substituting the hydrophobic core residues, Leu-331, Val-338, and Ile-345, of Hec1 with alanine completely eliminated Nuf2 binding and blocked mitotic progression. Moreover, unlike most coiled-coil proteins, where the buried positions are composed of hydrophobic residues, Hec1 possessed an unusual distribution of glutamic acid residues, Glu-334, Glu-341, and Glu-348, buried within the interior dimerization interface, which complement with three Nuf2 lysine residues: Lys-227, Lys-234, and Lys-241. Substituting these corresponding residues with alanine diminished the binding affinity between Hec1 and Nuf2, compromised NDC80 complex formation, and adversely affected mitotic progression. Taken together, these findings demonstrated that three buried glutamic acid-lysine pairs, in concert with hydrophobic interactions of core residues, provide the major specificity and stability requirements for Hec1-Nuf2 dimerization and NDC80 complex formation.


Subject(s)
Cell Cycle Proteins/genetics , Chromosome Segregation/genetics , Nuclear Proteins/genetics , Protein Multimerization/genetics , Cell Cycle Proteins/chemistry , Cytoskeletal Proteins , Gene Expression Regulation, Developmental , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Kinetochores/chemistry , Microtubules/chemistry , Microtubules/genetics , Mitosis , Multiprotein Complexes , Nuclear Proteins/chemistry , Protein Structure, Tertiary/genetics
15.
Cancer Cell ; 10(1): 13-24, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16843262

ABSTRACT

BRCA1 exerts transcriptional repression through interaction with CtIP in the C-terminal BRCT domain and ZBRK1 in the central domain. A dozen genes, including angiopoietin-1 (ANG1), a secreted angiogenic factor, are corepressed by BRCA1 and CtIP based on microarray analysis of mammary epithelial cells in 3D culture. BRCA1, CtIP, and ZBRK1 form a complex that coordinately represses ANG1 expression via a ZBRK1 recognition site in the ANG1 promoter. Impairment of this complex upregulates ANG1, which stabilizes endothelial cells that form a capillary-like network structure. Consistently, Brca1-deficient mouse mammary tumors exhibit accelerated growth, pronounced vascularization, and overexpressed ANG1. These results suggest that, besides its role in maintaining genomic stability, BRCA1 directly regulates the expression of angiogenic factors to modulate the tumor microenvironment.


Subject(s)
Angiopoietin-1/genetics , BRCA1 Protein/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Mammary Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/metabolism , Animals , BRCA1 Protein/genetics , Cell Line , Cell Survival/genetics , Cell Survival/physiology , Endodeoxyribonucleases , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Gene Expression Regulation/genetics , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Knockout , Models, Biological , Mutation/genetics , Neovascularization, Pathologic/pathology , Protein Binding , RNA Interference , Response Elements/genetics
16.
Nucleic Acids Res ; 40(1): 323-32, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21908404

ABSTRACT

Short interfering RNAs (siRNAs) target specific mRNAs for their degradation mediated by RNA-induced silencing complex (RISC). Persistent activation of siRNA-RISC frequently leads to non-targeting toxicity. However, how cells mediate this stress remains elusive. In this communication, we found that the presence of non-targeting siRNA selectively induced the expression of an endoplasmic reticulum (ER)-resident protein, non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), but not other ER-stress proteins including GRP78, Calnexin and XBP1. Cells suffering from constant non-targeting siRNA stress grew slower and prolonged G1 phase, while NPGPx-depleted cells accumulated mature non-targeting siRNA and underwent apoptosis. Upon the stress, NPGPx covalently bound to exoribonuclease XRN2, facilitating XRN2 to remove accumulated non-targeting siRNA. These results suggest that NPGPx serves as a novel responder to non-targeting siRNA-induced stress in facilitating XRN2 to release the non-targeting siRNA accumulation.


Subject(s)
Exoribonucleases/metabolism , Glutathione Peroxidase/metabolism , Peroxidases/metabolism , RNA, Small Interfering/metabolism , Stress, Physiological , Animals , Apoptosis , DNA Damage , Endoplasmic Reticulum Chaperone BiP , Exoribonucleases/physiology , G1 Phase , Glutathione Peroxidase/biosynthesis , Glutathione Peroxidase/genetics , Humans , Mice , Peroxidases/biosynthesis , Peroxidases/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological/genetics
17.
BMJ Open Ophthalmol ; 9(1)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490689

ABSTRACT

OBJECTIVE: Despite significant advances in clinical care and understanding of the underlying pathophysiology, age-related macular degeneration (AMD)-a major cause of global blindness-lacks effective treatment to prevent the irreversible degeneration of photoreceptors leading to central vision loss. Limited studies suggest phosphodiesterase type 5 (PDE5) inhibitors, such as sildenafil, may prevent AMD by increasing retinal blood flow. This study explores the potential association between sildenafil use and AMD risk in men with erectile dysfunction using UK data. METHODS AND ANALYSIS: Using the UK's IQVIA Medical Research Data, the study analysed 31 575 men prescribed sildenafil for erectile dysfunction and no AMD history from 2007 to 2015, matched with a comparator group of 62 155 non-sildenafil users in a 1:2 ratio, over a median follow-up of approximately three years. RESULTS: The primary outcome was the incidence of AMD in the two groups. The study found no significant difference in AMD incidence between the sildenafil users and the non-users, with an adjusted hazard ratio (HR) of 0.99 (95% CI 0.84 to 1.16), after accounting for confounders such as age, ethnicity, Townsend deprivation quintile, body mass index category, and diagnosis of hypertension and type 2 diabetes. CONCLUSION: The study results indicated no significant association between sildenafil use and AMD prevention in UK men with erectile dysfunction, suggesting sildenafil's protective effect on AMD is likely insignificant.


Subject(s)
Diabetes Mellitus, Type 2 , Erectile Dysfunction , Macular Degeneration , Male , Humans , Sildenafil Citrate/adverse effects , Erectile Dysfunction/chemically induced , Retrospective Studies , Diabetes Mellitus, Type 2/drug therapy , Phosphodiesterase 5 Inhibitors/adverse effects , Macular Degeneration/chemically induced
18.
PLoS Biol ; 8(7): e1000426, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20668654

ABSTRACT

UNLABELLED: Long-term potentiation (LTP), a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM)-dependent kinase II (CaMKII). CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Calcium/metabolism , Calorimetry , Catalytic Domain , Enzyme Activation , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Models, Molecular , Phosphorylation , Phosphothreonine/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Substrate Specificity
19.
PLoS Biol ; 8(7): e1000439, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20676357

ABSTRACT

Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform specificity.


Subject(s)
Cyclophilins/chemistry , Cyclophilins/metabolism , Multigene Family , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/metabolism , Amino Acid Sequence , Catalytic Domain , Humans , Models, Biological , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary
20.
J Inherit Metab Dis ; 36(6): 983-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23420214

ABSTRACT

Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inherited metabolic disorder of ketone metabolism, characterized by ketoacidotic episodes and often permanent ketosis. To date there are ~20 disease-associated alleles on the OXCT1 gene that encodes the mitochondrial enzyme SCOT. SCOT catalyzes the first, rate-limiting step of ketone body utilization in peripheral tissues, by transferring a CoA moiety from succinyl-CoA to form acetoacetyl-CoA, for entry into the tricarboxylic acid cycle for energy production. We have determined the crystal structure of human SCOT, providing a molecular understanding of the reported mutations based on their potential structural effects. An interactive version of this manuscript (which may contain additional mutations appended after acceptance of this manuscript) may be found on the web address: http://www.thesgc.org/jimd/SCOT .


Subject(s)
Acidosis/genetics , Coenzyme A-Transferases/deficiency , DNA Mutational Analysis/methods , Mutation, Missense , Protein Interaction Maps , Coenzyme A-Transferases/chemistry , Coenzyme A-Transferases/genetics , Crystallography, X-Ray , Humans , Models, Molecular , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps/genetics , Protein Multimerization/genetics , Protein Structure, Quaternary/genetics , Protein Structure, Secondary/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL