Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
1.
Arterioscler Thromb Vasc Biol ; 44(4): e117-e130, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385289

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is an acute febrile illness and systemic vasculitis often associated with cardiac sequelae, including arrhythmias. Abundant evidence indicates a central role for IL (interleukin)-1 and TNFα (tumor necrosis factor-alpha) signaling in the formation of arterial lesions in KD. We aimed to investigate the mechanisms underlying the development of electrophysiological abnormalities in a murine model of KD vasculitis. METHODS: Lactobacillus casei cell wall extract-induced KD vasculitis model was used to investigate the therapeutic efficacy of clinically relevant IL-1Ra (IL-1 receptor antagonist) and TNFα neutralization. Echocardiography, in vivo electrophysiology, whole-heart optical mapping, and imaging were performed. RESULTS: KD vasculitis was associated with impaired ejection fraction, increased ventricular tachycardia, prolonged repolarization, and slowed conduction velocity. Since our transcriptomic analysis of human patients showed elevated levels of both IL-1ß and TNFα, we asked whether either cytokine was linked to the development of myocardial dysfunction. Remarkably, only inhibition of IL-1 signaling by IL-1Ra but not TNFα neutralization was able to prevent changes in ejection fraction and arrhythmias, whereas both IL-1Ra and TNFα neutralization significantly improved vasculitis and heart vessel inflammation. The treatment of L casei cell wall extract-injected mice with IL-1Ra also restored conduction velocity and improved the organization of Cx43 (connexin 43) at the intercalated disk. In contrast, in mice with gain of function of the IL-1 signaling pathway, L casei cell wall extract induced spontaneous ventricular tachycardia and premature deaths. CONCLUSIONS: Our results characterize the electrophysiological abnormalities associated with L casei cell wall extract-induced KD and show that IL-1Ra is more effective in preventing KD-induced myocardial dysfunction and arrhythmias than anti-TNFα therapy. These findings support the advancement of clinical trials using IL-1Ra in patients with KD.


Subject(s)
Cardiomyopathies , Mucocutaneous Lymph Node Syndrome , Tachycardia, Ventricular , Vasculitis , Humans , Animals , Mice , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/drug therapy , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Tumor Necrosis Factor-alpha , Disease Models, Animal , Interleukin-1beta/metabolism , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/prevention & control , Tachycardia, Ventricular/prevention & control , Tachycardia, Ventricular/complications
2.
Nucleic Acids Res ; 51(18): 10026-10040, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37650645

ABSTRACT

Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.

3.
J Neurosci ; 43(9): 1555-1571, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36717231

ABSTRACT

The adolescent social experience is essential for the maturation of the prefrontal cortex in mammalian species. However, it still needs to be determined which cortical circuits mature with such experience and how it shapes adult social behaviors in a sex-specific manner. Here, we examined social-approaching behaviors in male and female mice after postweaning social isolation (PWSI), which deprives social experience during adolescence. We found that the PWSI, particularly isolation during late adolescence, caused an abnormal increase in social approaches (hypersociability) only in female mice. We further found that the PWSI female mice showed reduced parvalbumin (PV) expression in the left orbitofrontal cortex (OFCL). When we measured neural activity in the female OFCL, a substantial number of neurons showed higher activity when mice sniffed other mice (social sniffing) than when they sniffed an object (object sniffing). Interestingly, the PWSI significantly reduced both the number of activated neurons and the activity level during social sniffing in female mice. Similarly, the CRISPR/Cas9-mediated knockdown of PV in the OFCL during late adolescence enhanced sociability and reduced the social sniffing-induced activity in adult female mice via decreased excitability of PV+ neurons and reduced synaptic inhibition in the OFCL Moreover, optogenetic activation of excitatory neurons or optogenetic inhibition of PV+ neurons in the OFCL enhanced sociability in female mice. Our data demonstrate that the adolescent social experience is critical for the maturation of PV+ inhibitory circuits in the OFCL; this maturation shapes female social behavior via enhancing social representation in the OFCL SIGNIFICANCE STATEMENT Adolescent social isolation often changes adult social behaviors in mammals. Yet, we do not fully understand the sex-specific effects of social isolation and the brain areas and circuits that mediate such changes. Here, we found that adolescent social isolation causes three abnormal phenotypes in female but not male mice: hypersociability, decreased PV+ neurons in the left orbitofrontal cortex (OFCL), and decreased socially evoked activity in the OFCL Moreover, parvalbumin (PV) deletion in the OFCL in vivo caused the same phenotypes in female mice by increasing excitation compared with inhibition within the OFCL Our data suggest that adolescent social experience is required for PV maturation in the OFCL, which is critical for evoking OFCL activity that shapes social behaviors in female mice.


Subject(s)
Neurons , Parvalbumins , Male , Mice , Animals , Female , Parvalbumins/metabolism , Neurons/physiology , Prefrontal Cortex/physiology , Social Behavior , Social Isolation , Interneurons/physiology , Mammals
4.
Pflugers Arch ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955832

ABSTRACT

Piezo1 mechanosensitive ion channel plays a important role in vascular physiology and disease. This study aimed to elucidate the altered signaling elicited by Piezo1 activation in the arteries of type 2 diabetes. Ten- to 12-week-old male C57BL/6 (control) and type 2 diabetic mice (db-/db-) were used. The second-order mesenteric arteries (~ 150 µm) were used for isometric tension experiments. Western blot analysis and immunofluorescence staining were performed to observe protein expression. Piezo1 was significantly decreased in mesenteric arteries of type 2 diabetic mice compared to control mice, as analyzed by western blot and immunofluorescence staining. Piezo1 agonist, Yoda1, concentration-dependently induced relaxation of mesenteric arteries in both groups. Interestingly, the relaxation response was significantly greater in control mice than in db-/db- mice. The removal of endothelium reduced relaxation responses induced by Yoda1, which was greater in control mice than db-/db- mice. Furthermore, the relaxation response was reduced by pre-treatment with various types of K+ channel blockers in endothelium-intact arteries in control mice. In endothelium-denuded arteries, pre-incubation with charybdotoxin, an Ca2+-activated K+ channel (BKCa channel) blocker, significantly attenuated Yoda1-induced relaxation in db-/db- mice, while there was no effect in control mice. Co-immunofluorescence staining showed co-localization of Piezo1 and BKCa channel was more pronounced in db-/db- mice than in control mice. These results indicate that the vascular responses induced by Piezo1 activation are different in the mesenteric resistance arteries in type 2 diabetic mice.

5.
Nucleic Acids Res ; 50(W1): W90-W98, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35544232

ABSTRACT

Circular dichroism (CD) spectroscopy is widely used to characterize the secondary structure composition of proteins. To derive accurate and detailed structural information from the CD spectra, we have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which can handle the spectral diversity of ß-structured proteins. The BeStSel webserver provides this method with useful accessories to the community with the main goal to analyze single or multiple protein CD spectra. Uniquely, BeStSel provides information on eight secondary structure components including parallel ß-structure and antiparallel ß-sheets with three different groups of twist. It overperforms any available method in accuracy and information content, moreover, it is capable of predicting the protein fold down to the topology/homology level of the CATH classification. A new module of the webserver helps to distinguish intrinsically disordered proteins by their CD spectrum. Secondary structure calculation for uploaded PDB files will help the experimental verification of protein MD and in silico modelling using CD spectroscopy. The server also calculates extinction coefficients from the primary sequence for CD users to determine the accurate protein concentrations which is a prerequisite for reliable secondary structure determination. The BeStSel server can be freely accessed at https://bestsel.elte.hu.


Subject(s)
Intrinsically Disordered Proteins , Protein Structure, Secondary , Computer Simulation , Spectrum Analysis , Circular Dichroism
6.
Appl Nurs Res ; 77: 151800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796255

ABSTRACT

PURPOSE: Virtual reality technology has been used to establish a risk-free environment in which students can practice psychiatric nursing. A quasi-experimental study was conducted to examine the effects of a virtual reality (VR) based mental health nursing simulation on practice performance of undergraduate nursing students. METHODS: A quasi-experimental, pre- and post-test design was used. A total of 68 students were randomly assigned to an experimental group (n = 32) and a control group (n = 36). The control group received conventional simulation using text scenario-based role play. The intervention group received VR software consisting of 360° video clips and related quiz questions. RESULTS: The self-reported perceived competency in nursing performance showed no statistically significant improvement in the experimental group, whereas the control group showed a statistically significant improvement in symptom management (t = 2.84, p = 0.007) and nurse-patient interaction (t = 2.10, p = 0.043). Scores from the assessor showed better performance scores in the experimental group in symptom management (t = -2.62, p = 0.011), violence risk management (t = -3.42, p = 0.001), and nurse-patient interaction (t = -3.12, p = 0.003). CONCLUSIONS: The findings of this study indicate the potential of using VR for optimized mental health nursing simulation. VR technology allowed realistic experiences which may ensure students have a more comprehensive understanding of mentally ill patients and in doing so, overcome barriers of traditional simulation, resulting in better learning outcomes.


Subject(s)
Psychiatric Nursing , Virtual Reality , Humans , Psychiatric Nursing/education , Psychiatric Nursing/methods , Female , Male , Young Adult , Adult , Education, Nursing, Baccalaureate/methods , Students, Nursing/psychology , Students, Nursing/statistics & numerical data
7.
Bioconjug Chem ; 34(2): 333-344, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36735902

ABSTRACT

In the development of new drugs, typical polymer- or macromolecule-based nanocarriers suffer from manufacturing process complexity, unwanted systematic toxicity, and low loading capacity. However, carrier-free nanomedicines have made outstanding progress in drug delivery and pharmacokinetics, demonstrating most of the advantages associated with nanoparticles when applied in targeted anticancer therapy. Here, to overcome the problems of nanocarriers and conventional cytotoxic drugs, we developed a novel, carrier-free, self-assembled prodrug consisting of a hydrophobic palmitic (16-carbon chain n-hexadecane chain) moiety and hydrophilic group (or moiety) which is included in a caspase-3-specific cleavable peptide (Asp-Glu-Val-Asp, DEVD) and a cytotoxic drug (doxorubicin, DOX). The amphiphilic conjugate, the palmitic-DEVD-DOX, has the ability to self-assemble into nanoparticles in saline without the need for any carriers or nanoformulations. Additionally, the inclusion of doxorubicin is in its prodrug form and the apoptosis-specific DEVD peptide lead to the reduced side effects of doxorubicin in normal tissue. Furthermore, the carrier-free palmitic-DEVD-DOX nanoparticles could passively accumulate in the tumor tissues of tumor-bearing mice due to an enhanced permeation and retention (EPR) effect. As a result, the palmitic-DEVD-DOX conjugate showed an enhanced therapeutic effect compared with the unmodified DEVD-DOX conjugate. Therefore, this carrier-free palmitic-DEVD-DOX prodrug has great therapeutic potential to treat solid tumors, overcoming the problems of conventional chemotherapy and nanoparticles.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Prodrugs , Mice , Animals , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Delivery Systems , Nanoparticles/chemistry , Peptides , Neoplasms/drug therapy
9.
Mol Ther ; 30(2): 579-592, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34628052

ABSTRACT

CD19-targeting chimeric antigen receptor (CAR) T cells have become an important therapeutic option for patients with relapsed and refractory B cell malignancies. However, a significant portion of patients still do not benefit from the therapy owing to various resistance mechanisms, including high expression of multiple inhibitory immune checkpoint receptors. Here, we report a lentiviral two-in-one CAR T approach in which two checkpoint receptors are downregulated simultaneously by a dual short hairpin RNA cassette integrated into a CAR vector. Using this system, we evaluated CD19-targeting CAR T cells in the context of four different checkpoint combinations-PD-1/TIM-3, PD-1/LAG-3, PD-1/CTLA-4, and PD-1/TIGIT-and found that CAR T cells with PD-1/TIGIT downregulation uniquely exerted synergistic antitumor effects. Importantly, functional and phenotypic analyses suggested that downregulation of PD-1 enhances short-term effector function, whereas downregulation of TIGIT is primarily responsible for maintaining a less differentiated/exhausted state, providing a potential mechanism for the observed synergy. The PD-1/TIGIT-downregulated CAR T cells generated from diffuse large B cell lymphoma patient-derived T cells also showed robust antitumor activity and significantly improved persistence in vivo. The efficacy and safety of PD-1/TIGIT-downregulated CD19-targeting CAR T cells are currently being evaluated in adult patients with relapsed or refractory large B cell lymphoma (ClinicalTrials.gov: NCT04836507).


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Programmed Cell Death 1 Receptor , Antigens, CD19 , Down-Regulation , Humans , Immunotherapy, Adoptive , Phenotype , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , T-Lymphocytes
10.
Am J Respir Crit Care Med ; 206(12): 1495-1507, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35876129

ABSTRACT

Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function. Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD). Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. Ten transplant recipients from a separate transplant center provided samples before and after antireflux Nissen fundoplication surgery. Microbial community composition and density were measured using 16S ribosomal RNA gene sequencing and quantitative polymerase chain reaction, respectively, and inflammatory markers and bile acids were quantified. Measurements and Main Results: We observed a range of allograft community composition with three discernible types (labeled community state types [CSTs] 1-3). Transplant recipients with GERD were more likely to have CST1, characterized by high bacterial density and relative abundance of the oropharyngeal colonizing genera Prevotella and Veillonella. GERD was associated with more frequent transitions to CST1. CST1 was associated with lower inflammatory cytokine concentrations than pathogen-dominated CST3 across the range of microbial densities observed. Cox proportional hazard models revealed associations between CST3 and the development of ALAD/CLAD. Nissen fundoplication decreased bacterial load and proinflammatory cytokines. Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.


Subject(s)
Gastroesophageal Reflux , Lung Transplantation , Microbiota , Humans , Retrospective Studies , Gastroesophageal Reflux/complications , Lung , Inflammation , Allografts
11.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069193

ABSTRACT

Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, is an antidiabetic medication that reduces blood glucose. Although it is well known that dapagliflozin has additional benefits beyond glycemic control, such as reducing blood pressure and lowering the risk of cardiovascular events, no sufficient research data are available on the direct effect of dapagliflozin on cardiovascular function. Thus, in this study, we investigated the direct vascular effect of dapagliflozin on isolated rat coronary arteries. The left descending coronary arteries of 13-week-old male Sprague Dawley rats were cut into segments 2-3 mm long and mounted in a multi-wire myography system to measure isometric tension. Dapagliflozin effectively reduced blood vessel constriction induced by U-46619 (500 nM) in coronary arteries regardless of the endothelium. Treatment with an eNOS inhibitor (L-NNA, 100 µM), sGC inhibitor (ODQ, 5 µM), or COX inhibitor (indomethacin, 3 µM) did not affect the vasodilation induced by dapagliflozin. The application of a Ca2+-activated K+ channel (KCa) blocker (TEA, 2 mM), voltage-dependent K+ channel (KV) blocker (4-AP, 2 mM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (3 µM), and inward-rectifier K+ channel (KIR) blocker (BaCl2, 30 µM) did not affect the dapagliflozin-induced vasodilation either. The treatment with dapagliflozin decreased contractile responses induced by the addition of Ca2+, which suggested that the extracellular Ca2+ influx was inhibited by dapagliflozin. Treatment with dapagliflozin decreased the phosphorylation level of the 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that dapagliflozin has a significant vasodilatory effect on rat coronary arteries. Our findings suggest a novel pharmacologic approach for the treatment of cardiovascular diseases in diabetic patients through the modulation of Ca2+ homeostasis via dapagliflozin administration.


Subject(s)
Coronary Vessels , Vasodilation , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Adenosine Triphosphate/pharmacology , Endothelium, Vascular , Vasodilator Agents/pharmacology
12.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762296

ABSTRACT

Ezetimibe is a lipid-lowering agent that selectively inhibits cholesterol absorption by binding to the Niemann-Pick C1-like 1 (NPC1L1) protein. Although it is well known that administration of ezetimibe in hypercholesterolemia patients reduces the risk of cardiovascular events through attenuation of atherosclerosis, studies on the direct effect of ezetimibe on vascular function are not sufficient. The aim of the present study was to investigate the vascular effects of ezetimibe in rat mesenteric arteries. In the present study, 12-week-old male Sprague Dawley rats were used. After the rats were sacrificed, the second branches of the mesenteric arteries were isolated and cut into 2-3 mm segments and mounted in a multi-wire myography system to measure isometric tension. Ezetimibe reduced vasoconstriction induced by U46619 (500 nM) in endothelium-intact and endothelium-denuded arteries. Ezetimibe-induced vasodilation was not affected by the endothelial nitric oxide synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 300 µM) or the non-selective potassium channel blocker, tetraethylammonium (TEA, 10 mM). Moreover, ezetimibe also completely blocked the contraction induced by an increase in external calcium concentration. Ezetimibe significantly reduced vascular contraction induced by L-type Ca2+ channel activator (Bay K 8644, 30 nM). Treatment with ezetimibe decreased the phosphorylation level of 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that ezetimibe has a significant vasodilatory effect in rat mesenteric resistance arteries. These results suggest that ezetimibe may have beneficial cardiovascular effects beyond its cholesterol-lowering properties.


Subject(s)
Mesenteric Arteries , Vasodilation , Humans , Rats , Male , Animals , Ezetimibe/pharmacology , Rats, Sprague-Dawley , Phosphorylation , Membrane Transport Proteins
13.
Comput Inform Nurs ; 41(8): 569-577, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36455170

ABSTRACT

Virtual reality technology has been adopted to overcome barriers of conventional simulation. This study was conducted to determine the impact of mixed simulation (a 360° virtual reality and a high-fidelity simulator) on learning how to provide nursing care for patients with arrhythmia. A total of 49 students were randomly assigned to intervention (n = 25) and control (n = 23) groups. They were given four arrhythmia cases with a 360° virtual reality system first followed by a manikin-based simulation. The mixed simulation group showed greater improvement in knowledge, higher decision-making competency in "knowing and acting" ( P = .025) and "seeking information from instructors" ( P = .049), and lower anxiety in "using resources to gather information" ( P = .031). Study participants achieved a good level of empathy (3.28 ± 0.72) and liked the program (4.56 ± 0.60). They were satisfied with the program (4.48 ± 0.65). These findings provide new insight into learning through blending of new technology. When the 360° virtual reality was used with existing manikin-based simulation, they effectively reinforced one another. The 360° virtual reality can be an effective strategy to ensure active participation to gain a comprehensive understanding of and empathy for patients.


Subject(s)
Simulation Training , Virtual Reality , Humans , Clinical Competence , Computer Simulation , Feasibility Studies , Learning
14.
Medicina (Kaunas) ; 59(3)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36984509

ABSTRACT

Background and Objectives: Currently, only patients with osteonecrosis of the femoral head (ONFH), who had bone defects involving 30-33.3% of the remaining femoral head, are indicated in hip resurfacing arthroplasty (HRA). In an experimental cadaver model of ONFH involving up to 50% of the remaining femoral head, the initial stability of the femoral head implant (FHI) at the interface between the implant and the remaining femoral head was measured. Materials and Methods: The ten specimens and the remaining ten served as the experimental group and the control group, respectively. We examined the degree of the displacement of the FHI, the bonding strength between the FHI and the retained bone and that at the interface between the FHI and bone cement. Results: Changes in the degree of displacement at the final phase from the initial phase were calculated as 0.089 ± 0.036 mm in the experimental group and 0.083 ± 0.056 mm in the control group. However, this difference reached no statistical significance (p = 0.7789). Overall, there was an increase in the degree of displacement due to the loading stress, with increased loading cycles in both groups. In cycles of up to 6000 times, there was a steep increase. After cycles of 8000 times, however, there was a gradual increase. Moreover, in cycles of up to 8000 times, there was an increase in the difference in the degree of displacement due to the loading stress between the two groups. After cycles of 8000 times, however, such difference remained almost unchanged. Conclusions: In conclusion, orthopedic surgeons could consider performing the HRA in patients with ONFH where the bone defects involved up to 50% of the remaining femoral head, without involving the femoral head-neck junction in the anterior and superior area of the femoral head. However, more evidence-based studies are warranted to justify our results.


Subject(s)
Arthroplasty, Replacement, Hip , Femur Head Necrosis , Humans , Femur Head/surgery , Femur Head Necrosis/surgery , Femur , Femur Neck , Arthroplasty, Replacement, Hip/adverse effects , Cadaver
15.
Eur J Orthop Surg Traumatol ; 33(7): 2911-2920, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36906666

ABSTRACT

PURPOSE: The treatment of irreducible or severely displaced metacarpal and phalangeal bone fractures is still much debated. The recent development of the bioabsorbable magnesium K-wire is thought to allow effective treatment upon insertion via intramedullary fixation by minimizing articular cartilage injuries without discomfort until pin removal and drawbacks, such as pin track infection and metal plate removal. Therefore, this study investigated and reported the effects of intramedullary fixation with the bioabsorbable magnesium K-wire in unstable metacarpal and phalangeal bone fractures. METHODS: This study included 19 patients admitted to our clinic for metacarpal or phalangeal bone fractures from May 2019 to July 2021. As a result, 20 cases were examined among these 19 patients. RESULTS: Bone union was observed in all 20 cases, with a mean bone union time of 10.5 (SD 3.4) weeks. Reduction loss was observed in six cases, all showing dorsal angulation with a mean angle of 6.6° (SD 3.5°) at 4.6 weeks as compared with that noted in the unaffected side. The gas cavity upon H2 gas formation was first observed approximately 2 weeks postoperatively. The mean DASH score was 33.5 for instrumental activity and 9.5 for work/task performance. No patient complained of notable discomfort after surgery. CONCLUSION: Intramedullary fixation with the bioabsorbable magnesium K-wire may be used for unstable metacarpal and phalanx bone fractures. This wire is expected to be a particularly favorable indication for shaft fractures, although care should be taken due to the possibility of complications related to rigidity and deformity.


Subject(s)
Fracture Fixation, Intramedullary , Fractures, Bone , Metacarpal Bones , Humans , Metacarpal Bones/surgery , Metacarpal Bones/injuries , Absorbable Implants , Magnesium , Fracture Fixation, Intramedullary/adverse effects , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Bone Wires , Fracture Fixation, Internal/adverse effects
16.
J Biol Chem ; 296: 100217, 2021.
Article in English | MEDLINE | ID: mdl-33839679

ABSTRACT

Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.


Subject(s)
Ferredoxins/chemistry , Glycine max/chemistry , Heme Oxygenase-1/chemistry , Heme/chemistry , Iron/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Biliverdine/chemistry , Biliverdine/metabolism , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Catalytic Domain , Chloroplasts/chemistry , Chloroplasts/enzymology , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Ferredoxins/genetics , Ferredoxins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Heme/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hydrogen Bonding , Iron/metabolism , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Glycine max/enzymology , Glycine max/genetics , Thylakoids/chemistry , Thylakoids/enzymology
17.
Anal Biochem ; 639: 114521, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34906540

ABSTRACT

NMR is a powerful tool for characterizing intermolecular interactions at atomic resolution. However, the nature of the complex interactions of membrane-binding proteins makes it difficult to elucidate the interaction mechanisms. Here, we demonstrated that structural and thermodynamic analyses using solution NMR spectroscopy and isothermal titration calorimetry (ITC) can clearly detect a specific interaction between the pleckstrin homology (PH) domain of ceramide transport protein (CERT) and phosphatidylinositol 4-monophosphate (PI4P) embedded in the lipid nanodisc, and distinguish the specific interaction from nonspecific interactions with the bulk surface of the lipid nanodisc. This NMR-ITC hybrid strategy provides detailed characterization of protein-lipid membrane interactions.


Subject(s)
Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy/methods , Phosphatidylinositol Phosphates/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Calorimetry/instrumentation , Calorimetry/methods , Humans , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Molecular Dynamics Simulation , Nanostructures/chemistry , Phosphatidylinositol Phosphates/chemistry , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Titrimetry/instrumentation , Titrimetry/methods
18.
Proc Natl Acad Sci U S A ; 116(47): 23426-23436, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685616

ABSTRACT

As a central feature of neuroinflammation, microglial dysfunction has been increasingly considered a causative factor of neurodegeneration implicating an intertwined pathology with amyloidogenic proteins. Herein, we report the smallest synthetic molecule (N,N'-diacetyl-p-phenylenediamine [DAPPD]), simply composed of a benzene ring with 2 acetamide groups at the para position, known to date as a chemical reagent that is able to promote the phagocytic aptitude of microglia and subsequently ameliorate cognitive defects. Based on our mechanistic investigations in vitro and in vivo, 1) the capability of DAPPD to restore microglial phagocytosis is responsible for diminishing the accumulation of amyloid-ß (Aß) species and significantly improving cognitive function in the brains of 2 types of Alzheimer's disease (AD) transgenic mice, and 2) the rectification of microglial function by DAPPD is a result of its ability to suppress the expression of NLRP3 inflammasome-associated proteins through its impact on the NF-κB pathway. Overall, our in vitro and in vivo investigations on efficacies and molecular-level mechanisms demonstrate the ability of DAPPD to regulate microglial function, suppress neuroinflammation, foster cerebral Aß clearance, and attenuate cognitive deficits in AD transgenic mouse models. Discovery of such antineuroinflammatory compounds signifies the potential in discovering effective therapeutic molecules against AD-associated neurodegeneration.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents/pharmacology , Cognition/drug effects , Microglia/drug effects , Neuroprotective Agents/pharmacology , Phagocytosis/drug effects , Phenylenediamines/pharmacology , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Anti-Inflammatory Agents/therapeutic use , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Inflammasomes/drug effects , Inflammasomes/genetics , Maze Learning , Mice , Mice, Transgenic , Microglia/physiology , Molecular Structure , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroprotective Agents/therapeutic use , Peptide Fragments/genetics , Phenylenediamines/chemistry , Phenylenediamines/therapeutic use , Presenilin-1/genetics , Spatial Memory/drug effects
19.
Nano Lett ; 21(5): 2339-2346, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33472003

ABSTRACT

While the neuropathological characteristics of Niemann-Pick disease type C (NPC) result in a fatal diagnosis, the development of clinically available therapeutic agent remains a challenge. Here we propose graphene quantum dots (GQDs) as a potential candidate for the impaired functions in NPC in vivo. In addition to the previous findings that GQDs exhibit negligible long-term toxicity and are capable of penetrating the blood-brain barrier, GQD treatment reduces the aggregation of cholesterol in the lysosome through expressed physical interactions. GQDs also promote autophagy and restore defective autophagic flux, which, in turn, decreases the atypical accumulation of autophagic vacuoles. More importantly, the injection of GQDs inhibits the loss of Purkinje cells in the cerebellum while also demonstrating reduced activation of microglia. The ability of GQDs to alleviate impaired functions in NPC proves the promise and potential of the use of GQDs toward resolving NPC and other related disorders.


Subject(s)
Graphite , Niemann-Pick Disease, Type C , Quantum Dots , Autophagy , Humans , Lysosomes , Niemann-Pick Disease, Type C/drug therapy
20.
Int J Mol Sci ; 23(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35806385

ABSTRACT

The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid-liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.


Subject(s)
Processing Bodies , Saccharomyces cerevisiae Proteins , Cycloheximide/pharmacology , Cytoplasmic Granules/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL