Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Lancet Oncol ; 19(3): 310-322, 2018 03.
Article in English | MEDLINE | ID: mdl-29449192

ABSTRACT

BACKGROUND: Obesity has been linked to increased mortality in several cancer types; however, the relation between obesity and survival outcomes in metastatic melanoma is unknown. The aim of this study was to examine the association between body-mass index (BMI) and progression-free survival or overall survival in patients with metastatic melanoma who received targeted therapy, immunotherapy, or chemotherapy. METHODS: This retrospective study analysed independent cohorts of patients with metastatic melanoma assigned to treatment with targeted therapy, immunotherapy, or chemotherapy in randomised clinical trials and one retrospective study of patients treated with immunotherapy. Patients were classified according to BMI, following the WHO definitions, as underweight, normal, overweight, or obese. Patients without BMI and underweight patients were excluded. The primary outcomes were the associations between BMI and progression-free survival or overall survival, stratified by treatment type and sex. We did multivariable analyses in the independent cohorts, and combined adjusted hazard ratios in a mixed-effects meta-analysis to provide a precise estimate of the association between BMI and survival outcomes; heterogeneity was assessed with meta-regression analyses. Analyses were done on the predefined intention-to-treat population in the randomised controlled trials and on all patients included in the retrospective study. FINDINGS: The six cohorts consisted of a total of 2046 patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy between Aug 8, 2006, and Jan 15, 2016. 1918 patients were included in the analysis. Two cohorts containing patients from randomised controlled trials treated with targeted therapy (dabrafenib plus trametinib [n=599] and vemurafenib plus cobimetinib [n=240]), two cohorts containing patients treated with immunotherapy (one randomised controlled trial of ipilimumab plus dacarbazine [n=207] and a retrospective cohort treated with pembrolizumab, nivolumab, or atezolizumab [n=331]), and two cohorts containing patients treated with chemotherapy (two randomised controlled trials of dacarbazine [n=320 and n=221]) were classified according to BMI as normal (694 [36%] patients), overweight (711 [37%]), or obese (513 [27%]). In the pooled analysis, obesity, compared with normal BMI, was associated with improved survival in patients with metastatic melanoma (average adjusted hazard ratio [HR] 0·77 [95% CI 0·66-0·90] for progression-free survival and 0·74 [0·58-0·95] for overall survival). The survival benefit associated with obesity was restricted to patients treated with targeted therapy (HR 0·72 [0·57-0·91] for progression-free survival and 0·60 [0·45-0·79] for overall survival) and immunotherapy (HR 0·75 [0·56-1·00] and 0·64 [0·47-0·86]). No associations were observed with chemotherapy (HR 0·87 [0·65-1·17, pinteraction=0·61] for progression-free survival and 1·03 [0·80-1·34, pinteraction=0·01] for overall survival). The association of BMI with overall survival for patients treated with targeted and immune therapies differed by sex, with inverse associations in men (HR 0·53 [0·40-0·70]), but no associations observed in women (HR 0·85 [0·61-1·18, pinteraction=0·03]). INTERPRETATION: Our results suggest that in patients with metastatic melanoma, obesity is associated with improved progression-free survival and overall survival compared with those outcomes in patients with normal BMI, and that this association is mainly seen in male patients treated with targeted or immune therapy. These results have implications for the design of future clinical trials for patients with metastatic melanoma and the magnitude of the benefit found supports further investigation of the underlying mechanism of these associations. FUNDING: ASCO/CCF Young Investigator Award, ASCO/CCF Career Development Award, MD Anderson Cancer Center (MDACC) Melanoma Moonshot Program, MDACC Melanoma SPORE, and the Dr Miriam and Sheldon G Adelson Medical Research Foundation.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Body Mass Index , Melanoma/drug therapy , Molecular Targeted Therapy , Obesity/epidemiology , Skin Neoplasms/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Humans , Male , Melanoma/immunology , Melanoma/mortality , Melanoma/secondary , Middle Aged , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/mortality , Obesity/diagnosis , Obesity/mortality , Progression-Free Survival , Protective Factors , Randomized Controlled Trials as Topic , Retrospective Studies , Risk Assessment , Risk Factors , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Time Factors , Treatment Outcome , Young Adult
2.
Lancet ; 386(9992): 444-51, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26037941

ABSTRACT

BACKGROUND: Previously, a study of ours showed that the combination of dabrafenib and trametinib improves progression-free survival compared with dabrafenib and placebo in patients with BRAF Val600Lys/Glu mutation-positive metastatic melanoma. The study was continued to assess the secondary endpoint of overall survival, which we report in this Article. METHODS: We did this double-blind phase 3 study at 113 sites in 14 countries. We enrolled previously untreated patients with BRAF Val600Glu or Val600Lys mutation-positive unresectable stage IIIC or stage IV melanoma. Participants were computer-randomised (1:1) to receive a combination of dabrafenib (150 mg orally twice daily) and trametinib (2 mg orally once daily), or dabrafenib and placebo. The primary endpoint was progression-free survival and overall survival was a secondary endpoint. This study is registered with ClinicalTrials.gov, number NCT01584648. FINDINGS: Between May 4, 2012, and Nov 30, 2012, we screened 947 patients for eligibility, of whom 423 were randomly assigned to receive dabrafenib and trametinib (n=211) or dabrafenib only (n=212). The final data cutoff was Jan 12, 2015, at which time 222 patients had died. Median overall survival was 25·1 months (95% CI 19·2-not reached) in the dabrafenib and trametinib group versus 18·7 months (15·2-23·7) in the dabrafenib only group (hazard ratio [HR] 0·71, 95% CI 0·55-0·92; p=0·0107). Overall survival was 74% at 1 year and 51% at 2 years in the dabrafenib and trametinib group versus 68% and 42%, respectively, in the dabrafenib only group. Based on 301 events, median progression-free survival was 11·0 months (95% CI 8·0-13·9) in the dabrafenib and trametinib group and 8·8 months (5·9-9·3) in the dabrafenib only group (HR 0·67, 95% CI 0·53-0·84; p=0·0004; unadjusted for multiple testing). Treatment-related adverse events occurred in 181 (87%) of 209 patients in the dabrafenib and trametinib group and 189 (90%) of 211 patients in the dabrafenib only group; the most common was pyrexia (108 patients, 52%) in the dabrafenib and trametinib group, and hyperkeratosis (70 patients, 33%) in the dabrafenib only group. Grade 3 or 4 adverse events occurred in 67 (32%) patients in the dabrafenib and trametinib group and 66 (31%) patients in the dabrafenib only group. INTERPRETATION: The improvement in overall survival establishes the combination of dabrafenib and trametinib as the standard targeted treatment for BRAF Val600 mutation-positive melanoma. Studies assessing dabrafenib and trametinib in combination with immunotherapies are ongoing. FUNDING: GlaxoSmithKline.


Subject(s)
Imidazoles/administration & dosage , Melanoma/drug therapy , Oximes/administration & dosage , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Treatment Outcome , Young Adult
3.
Lancet Oncol ; 16(13): 1389-98, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26433819

ABSTRACT

BACKGROUND: In the COMBI-v trial, patients with previously untreated BRAF Val600Glu or Val600Lys mutant unresectable or metastatic melanoma who were treated with the combination of dabrafenib and trametinib had significantly longer overall and progression-free survival than those treated with vemurafenib alone. Here, we present the effects of treatments on health-related quality of life (HRQoL), an exploratory endpoint in the COMBI-v study. METHODS: COMBI-v was an open-label, randomised phase 3 study in which 704 patients with metastatic melanoma with a BRAF Val600 mutation were randomly assigned (1:1) by an interactive voice response system to receive either a combination of dabrafenib (150 mg twice-daily) and trametinib (2 mg once-daily) or vemurafenib monotherapy (960 mg twice-daily) orally as first-line therapy. The primary endpoint was overall survival. In this pre-specified exploratory analysis, we prospectively assessed HRQoL in the intention-to-treat population with the European Organisation for Research and Treatment of Cancer quality of life (EORTC QLQ-C30), EuroQoL-5D (EQ-5D), and Melanoma Subscale of the Functional Assessment of Cancer Therapy-Melanoma (FACT-M), completed at baseline, during study treatment, at disease progression, and after progression. We used a mixed-model, repeated measures ANCOVA to assess differences in mean scores between groups with baseline score as covariate; all p-values are descriptive. The COMBI-v trial is registered with ClinicalTrials.gov, number NCT01597908, and is ongoing for the primary endpoint, but is not recruiting patients. FINDINGS: From June 4, 2012, to Oct 7, 2013, 1645 patients at 193 centres worldwide were screened for eligibility, and 704 patients were randomly assigned to dabrafenib plus trametinib (n=352) or vemurafenib (n=352). Questionnaire completion rates for both groups were high (>95% at baseline, >80% at follow-up assessments, and >70% at disease progression) with similar HRQoL and symptom scores reported at baseline in both treatment groups for all questionnaires. Differences in mean scores between treatment groups were significant and clinically meaningful in favour of the combination compared with vemurafenib monotherapy for most domains across all three questionnaires during study treatment and at disease progression, including EORTC QLQ-C30 global health (7·92, 7·62, 6·86, 7·47, 5·16, 7·56, and 7·57 at weeks 8, 16, 24, 32, 40, 48, and disease progression, respectively; p<0·001 for all assessments except p=0·005 at week 40), EORTC QLQ-C30 pain (-13·20, -8·05, -8·82, -12·69, -12·46, -11·41, and -10·57 at weeks 8, 16, 24, 32, 40, 48, and disease progression, respectively; all p<0·001), EQ-5D thermometer scores (7·96, 8·05, 6·83, 11·53, 7·41, 9·08, and 10·51 at weeks 8, 16, 24, 32, 40, 48, and disease progression, respectively; p<0·001 for all assessments except p=0·006 at week 32), and FACT-M Melanoma Subscale score (3·62, 2·93, 2·45, 3·39, 2·85, 3·00, and 3·68 at weeks 8, 16, 24, 32, 40, 48, and disease progression, respectively; all p<0·001). INTERPRETATION: From the patient's perspective, which integrates not only survival advantage but also disease-associated and adverse-event-associated symptoms, treatment with the combination of a BRAF inhibitor plus a MEK inhibitor (dabrafenib plus trametinib) adds a clear benefit over monotherapy with the BRAF inhibitor vemurafenib and supports the combination therapy as standard of care in this population.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Imidazoles/therapeutic use , Indoles/therapeutic use , Melanoma/drug therapy , Mutation , Oximes/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Quality of Life , Skin Neoplasms/drug therapy , Sulfonamides/therapeutic use , Administration, Oral , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , DNA Mutational Analysis , Disease Progression , Disease-Free Survival , Drug Administration Schedule , Genetic Predisposition to Disease , Humans , Imidazoles/administration & dosage , Imidazoles/adverse effects , Indoles/administration & dosage , Indoles/adverse effects , Intention to Treat Analysis , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Melanoma/genetics , Melanoma/mortality , Melanoma/secondary , Oximes/administration & dosage , Oximes/adverse effects , Phenotype , Prospective Studies , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyridones/administration & dosage , Pyridones/adverse effects , Pyrimidinones/administration & dosage , Pyrimidinones/adverse effects , Risk Factors , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Surveys and Questionnaires , Time Factors , Treatment Outcome , Vemurafenib
4.
JAMA Netw Open ; 7(4): e246228, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607626

ABSTRACT

Importance: Less than 5% of patients with cancer enroll in a clinical trial, partly due to financial and logistic burdens, especially among underserved populations. The COVID-19 pandemic marked a substantial shift in the adoption of decentralized trial operations by pharmaceutical companies. Objective: To assess the current global state of adoption of decentralized trial technologies, understand factors that may be driving or preventing adoption, and highlight aspirations and direction for industry to enable more patient-centric trials. Design, Setting, and Participants: The Bloomberg New Economy International Cancer Coalition, composed of patient advocacy, industry, government regulator, and academic medical center representatives, developed a survey directed to global biopharmaceutical companies of the coalition from October 1 through December 31, 2022, with a focus on registrational clinical trials. The data for this survey study were analyzed between January 1 and 31, 2023. Exposure: Adoption of decentralized clinical trial technologies. Main Outcomes and Measures: The survey measured (1) outcomes of different remote monitoring and data collection technologies on patient centricity, (2) adoption of these technologies in oncology and all therapeutic areas, and (3) barriers and facilitators to adoption using descriptive statistics. Results: All 8 invited coalition companies completed the survey, representing 33% of the oncology market by revenues in 2021. Across nearly all technologies, adoption in oncology trials lags that of all trials. In the current state, electronic diaries and electronic clinical outcome assessments are the most used technology, with a mean (SD) of 56% (19%) and 51% (29%) adoption for all trials and oncology trials, respectively, whereas visits within local physician networks is the least adopted at a mean (SD) of 12% (18%) and 7% (9%), respectively. Looking forward, the difference between the current and aspired adoption rate in 5 years for oncology is large, with respondents expecting a 40% or greater absolute adoption increase in 8 of the 11 technologies surveyed. Furthermore, digitally enabled recruitment, local imaging capabilities, and local physician networks were identified as technologies that could be most effective for improving patient centricity in the long term. Conclusions and Relevance: These findings may help to galvanize momentum toward greater adoption of enabling technologies to support a new paradigm of trials that are more accessible, less burdensome, and more inclusive.


Subject(s)
Clinical Trials as Topic , Neoplasms , Humans , Data Collection , Medical Oncology
5.
Pharmacology ; 81(1): 11-7, 2008.
Article in English | MEDLINE | ID: mdl-17726343

ABSTRACT

BACKGROUND/AIMS: Phosphodiesterase type 4 (PDE4) has been previously shown to regulate colonic contractile activity in vitro. In this study, the effects of PDE4 inhibition were assessed in a model of stress-induced defecation previously demonstrated to be due to increased colonic transit/evacuation. METHODS: Rats were individually placed in a mild restraint cage and placed into a 12 degrees C environment (cold-restraint stress) for 60 min. Mice received restraint (only) stress at room temperature for 30 min. Loperamide (positive control compound) or two different PDE4 inhibitors (rolipram and roflumilast) were administered orally at several doses to the rodents 1 h before stress began. Vehicle alone was administered for comparison. The number of fecal pellets expelled during stress (fecal pellet output), total fecal pellet wet weight and total fecal water content were measured. RESULTS: Loperamide produced a dose-related decrease (ID(50)s in mg/kg) in fecal pellet output (rat = 7.4, mouse = 0.7) and significantly decreased fecal wet weight (72.9%) and decreased fecal percent water content (9.4%). The two PDE4 inhibitors produced a similar dose-related inhibition of fecal pellet output. Rolipram exhibited ID(50)s in rat and mouse of 14.1 and 27.1, respectively. Rolipram significantly decreased fecal wet weight (58.8%) but increased fecal percent water content (15.0%). For roflumilast, ID(50)s were 24.2 mg/kg and 12.4 in the rat and mouse, respectively. Although roflumilast also significantly (p < 0.05) decreased fecal wet weight (47.2%), it did not significantly increase fecal percent water content. CONCLUSIONS: These data indicate that PDE4 inhibition is effective in reducing rodent stress-induced defecation, provides the first functional data on a potential role for PDE4 activity in the colonic evacuation response to stress, and indicates the potential utility of PDE4 inhibitors in functional bowel disease such as irritable bowel syndrome requires further evaluation.


Subject(s)
Defecation/drug effects , Gastrointestinal Motility/drug effects , Phosphodiesterase 4 Inhibitors , Phosphodiesterase Inhibitors/therapeutic use , Stress, Psychological/physiopathology , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Antidiarrheals/administration & dosage , Antidiarrheals/pharmacology , Antidiarrheals/therapeutic use , Benzamides/administration & dosage , Benzamides/pharmacology , Benzamides/therapeutic use , Cold Temperature , Cyclopropanes/administration & dosage , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/prevention & control , Loperamide/administration & dosage , Loperamide/pharmacology , Loperamide/therapeutic use , Male , Mice , Mice, Inbred C57BL , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Restraint, Physical , Rolipram/administration & dosage , Rolipram/pharmacology , Rolipram/therapeutic use , Stress, Psychological/complications , Stress, Psychological/enzymology
6.
Eur J Cancer ; 82: 45-55, 2017 09.
Article in English | MEDLINE | ID: mdl-28648698

ABSTRACT

AIM: Understanding predictors of long-term benefit with currently available melanoma therapies is the key for optimising individualised treatments. A prior pooled analysis of dabrafenib plus trametinib (D + T)-randomised trials (median follow-up, 20.0 months) identified baseline lactate dehydrogenase (LDH) and number of organ sites with metastasis as predictive factors for progression-free (PFS) and overall (OS) survival. However, longer-term follow-up analyses are needed to confirm which patients treated with D + T can achieve maximum benefit. METHODS: Three-year landmark data were retrospectively pooled for D + T patients in phase 3 trials (COMBI-d [NCT01584648]; COMBI-v [NCT01597908]). Univariate and multivariate analyses assessed prognostic values of predefined baseline factors; regression tree analysis determined hierarchy and interactions between variables. RESULTS: Long-term pooled outcomes were consistent with individual trial results (N = 563; 3-year PFS, 23%; 3-year OS, 44%). Baseline LDH level and number of organ sites remained strongly associated with and/or predictive of PFS and OS. In addition, baseline sum of lesion diameters (SLD) was identified as a predictor for progression. In the most favourable prognostic group (normal LDH, SLD <66 mm, <3 organ sites; n = 183/563 [33%]), 3-year PFS was 42%. Baseline number of organ sites was also predictive of outcomes in patients with PFS ≥ 6 months. CONCLUSION: Using the largest phase 3 data set available for BRAF/MEK inhibitor combination therapy in melanoma, these results demonstrate that durable responses lasting ≥3 years are possible in subsets of patients with BRAF-mutant melanoma receiving D + T. Although the best predictive model evolved with longer follow-up, factors predicting clinical outcomes with the combination remained consistent with previous analyses.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Female , Humans , Imidazoles/administration & dosage , L-Lactate Dehydrogenase/metabolism , Male , Melanoma/metabolism , Melanoma/pathology , Middle Aged , Neoplasm Metastasis/pathology , Oximes/administration & dosage , Predictive Value of Tests , Prognosis , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Risk Factors , Survival Analysis
7.
Expert Opin Investig Drugs ; 11(4): 469-82, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11922856

ABSTRACT

Spinal cord injury remains a devastating neurological condition with limited therapeutic opportunities. Since decompressive surgery and high-dose methylprednisolone have limited utility for most patients, spinal cord injury clearly represents a major medical challenge. Experimental evidence has suggested that secondary cellular injury processes may be a realistic target for therapeutic intervention with the goal of inhibiting the progression of detrimental changes that normally follows traumatic injury to the cord. Preventing or reducing this delayed cellular injury may alone improve neurological recovery or facilitate future regenerative approaches to the injured cord. This review summarises recent advances in the development of pharmacological agents targeting the acute phase of spinal cord injury as well as potential strategies to facilitate regeneration of the spinal cord.


Subject(s)
Neuroprotective Agents/therapeutic use , Spinal Cord Injuries/drug therapy , Clinical Trials as Topic , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Humans , Ion Channels/drug effects , Ion Channels/physiology , Methylprednisolone/therapeutic use , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery
8.
Expert Opin Investig Drugs ; 11(5): 603-14, 2002 May.
Article in English | MEDLINE | ID: mdl-11996643

ABSTRACT

Given the few options currently available for patients following ischaemic stroke, the recent disappointing failures of several large-scale Phase III clinical trials has made the search for novel therapeutic approaches even more critical. Experimental evidence has suggested that the majority of stroke patients have a slow evolution of brain injury which can occur over several hours. Progressive microcirculatory failure following the initial onset of ischaemia may contribute to the expansion of brain injury. Included among the pathophysiological changes that are speculated to occur as a secondary response to the initial ischaemia are free radical production, excitotoxicity (for example, glutamate) disruption of ionic homeostasis (for example, sodium and calcium influx), enzymatic changes, stimulation of the inflammatory process, endothelin release, activation of platelets and leukocytes, delayed coagulation and endothelial dysfunction. All of these pathophysiological reactions could contribute to an increase in local vascular resistance and therefore cause progressive hypoperfusion of the brain following the onset of stroke. The scope of this review will focus on recent clinical failures in addition to agents currently in clinical development, comparing vascular targets to the common neuroprotective strategies.


Subject(s)
Brain Ischemia/drug therapy , Stroke/drug therapy , Brain/blood supply , Brain/physiopathology , Brain Ischemia/etiology , Cerebrovascular Circulation/drug effects , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Humans , Stroke/complications , Stroke/physiopathology , Time Factors , Treatment Outcome
9.
Curr Opin Investig Drugs ; 4(7): 847-58, 2003 Jul.
Article in English | MEDLINE | ID: mdl-14619407

ABSTRACT

Given the few options that are currently available for patients following ischemic stroke, the search for novel therapeutic approaches becomes more critical. Pharmaceutical intervention strategies for the treatment of stroke include preventative (prophylactic or stroke pretreatment), neuroprotective (early acute post-stroke treatment) and regenerative (delayed post-stroke treatment for long-term benefit) therapeutic approaches. Experimental evidence has suggested that the majority of stroke patients have a slow evolution of brain injury that occurs over several hours. This 'evolving stroke' may ultimately be a realistic target for therapeutic intervention, with the goal of inhibiting the progression of detrimental changes that normally follow the acute ischemic event. Preventing or reducing this delayed cellular injury may improve neurological outcome and also facilitate brain recovery from injury. Significant impact on stroke can be expected as additional research is conducted on biological targets or processes important in facilitating the brain's regenerative capacity following cellular/tissue loss. This review provides updates on stroke prevention therapies (anticoagulant and antiplatelet), the advances in the development of pharmacological agents that target the acute phase of stroke (thrombolytics and neuroprotective drugs), and newly evolving approaches that may facilitate brain regeneration (i.e., neurobehavioral recovery) following brain damage.


Subject(s)
Fibrinolytic Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Recovery of Function/drug effects , Stroke/drug therapy , Stroke/prevention & control , Animals , Clinical Trials as Topic/statistics & numerical data , Fibrinolytic Agents/pharmacology , Humans , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neuroprotective Agents/pharmacology , Recovery of Function/physiology , Stroke/psychology
10.
J Neurosci Methods ; 113(2): 159-66, 2002 Jan 30.
Article in English | MEDLINE | ID: mdl-11772437

ABSTRACT

BACKGROUND: Recent studies have demonstrated spontaneous and prolonged hyperthermia following stroke in both humans and rodents. However, a full characterization of these pyretic changes and the effects of anti-pyretic drugs on outcome is not available. METHODS: The aims of this study were to monitor conscious body temperature (n=10 per group) using programmable microchips for up to 24 h in rats following either permanent (p) or 90 min transient (t) middle cerebral artery occlusion (MCAO) or sham surgery, and to evaluate the relationship to hypothalamic damage. Also, the effects of anti-pyretic drug therapy on body temperature and infarct volume were evaluated in animals treated with vehicle, optimal doses of either aspirin or paracetamol (250 mg/kg i.p.) following pMCAO (n=10 per group). RESULTS: At 1 h, body temperature significantly (P<0.01) increased to 38.6+/-0.2 degrees C following tMCAO and 38.9+/-0.1 degrees C following pMCAO compared with sham-operated animals (37.1+/-0.1 degrees C). Sustained hyperthermia (> or =38.1 degrees C) was observed for up to 24 h following pMCAO but approached baseline within 30 min (37.6+/-0.2 degrees C) following tMCAO with reperfusion. The post-stroke pyrexia was related to the degree of ischemia where hypothalamic damage was observed in (80%) of the animals undergoing pMCAO and (0%) in the tMCAO group (P<0.05). Treatment with paracetamol (250 mg/kg i.p.) significantly attenuated (P<0.05) but did not normalize core body temperature up to 2 h (38.2+/-0.4 degrees C) compared with vehicle treated animals (39.3+/-0.1 degrees C). Aspirin had no effect on temperature under these conditions. Hypothalamic damage and lesion volume were not different between animals treated with paracetamol (253.3+/-8.5 mm(3)), aspirin (264.0+/-11.6 mm(3)) or vehicle (274.4+/-8.2 mm(3)). CONCLUSIONS: This study is the first to demonstrate the utility of programmable microchips to monitor serial changes in post-stroke hyperthermia. The sustained post-stroke pyrexia and negative effects of antipyretic treatment may be attributed to the extensive hypothalamic injury suggesting that better pharmacologic approaches to reduce body temperature should be identified and evaluated for brain protection in severe experimental stroke.


Subject(s)
Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Fever/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Animals , Body Temperature/drug effects , Fever/pathology , Fever/physiopathology , Hypothalamus/pathology , Hypothalamus/physiopathology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Rats , Rats, Sprague-Dawley , Software , Telemetry/instrumentation
11.
Eur J Pharmacol ; 447(1): 37-42, 2002 Jun 28.
Article in English | MEDLINE | ID: mdl-12106800

ABSTRACT

Inhibition of the p38 mitogen-activated protein kinase (MAP Kinase) pathway reduces acute ischemic injury in vivo, suggesting a direct role for this signaling pathway in a number of neurodegenerative processes. The present study was designed to evaluate further the role of p38 MAP Kinase in acute excitotoxic neuronal injury using the selective p38 inhibitor SB-239063 (trans-1-(4hydroxycyclohexyl)-4-(fluorophenyl)-5-(2-methoxy-pyrimidin-4-yl) imidazole). Unlike the widely used p38 inhibitor, SB-203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole), this second generation p38 inhibitor more selectively inhibits p38 MAP Kinase without affecting the activity of other MAP Kinase signaling pathways and provides a more accurate means to selectively assess the role of p38 in excitotoxicity that has not been previously possible. SB-239063 provided substantial protection against cell death induced by either oxygen glucose deprivation (OGD) or magnesium deprivation in cultured neurons. The ability of this compound to block excitotoxicity was not due to direct inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated currents as SB-239063 did not alter NMDA electrophysiological responses. SB-239063 did not protect against a severe excitotoxic insult induced by 60-min exposure to NMDA. However, when tested against a less severe, brief (5 min) NMDA exposure, p38 inhibition provided substantial protection. These data demonstrate that inhibition of p38 MAP Kinase can confer neuroprotection in vitro against mild but not severe excitotoxic exposure, and suggests that other additional pathways/mechanism(s) may be involved in severe excitotoxic cell death.


Subject(s)
Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Neurons/drug effects , Neuroprotective Agents/pharmacology , Pyrimidines/pharmacology , Animals , Cell Death/drug effects , Cell Hypoxia , Cells, Cultured , Excitatory Amino Acid Agonists/pharmacology , Glucose/deficiency , Hippocampus/cytology , Magnesium/metabolism , N-Methylaspartate/pharmacology , Neurons/cytology , Neurons/enzymology , Patch-Clamp Techniques , Prosencephalon/cytology , Rats , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , p38 Mitogen-Activated Protein Kinases
12.
J Cardiovasc Pharmacol Ther ; 15(2): 196-202, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20332533

ABSTRACT

Cholesteryl ester transfer protein (CETP) plays a key role in high-density lipoprotein (HDL) cholesterol metabolism, but normal mice are deficient in CETP. In this study, transgenic mice expressing both human apolipoprotein B 100 (ApoB-100) and human CETP (hApoB100/hCETP) were used to characterize the effects of CETP inhibition and peroxisome proliferator-activated receptor alpha (PPARalpha) agonism on lipid profiles. Torcetrapib (3, 10, and 30 mg/kg), a CETP inhibitor, fenofibrate (30 mg/kg), a weak PPARalpha agonist, and GW590735 (3 and 10 mg/kg), a potent and selective PPARalpha agonist were given orally for 14 days to hApoB100/hCETP mice and lipid profiles were assessed. The average percentages of HDL, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) cholesterol fractions in hApoB100/hCETP mice were 34.8%, 61.6%, and 3.6%, respectively, which is similar to those of normolipidemic humans. Both torcetrapib and fenofibrate significantly increased HDL cholesterol and reduced LDL cholesterol, and there was a tendency for torcetrapib to reduce VLDL cholesterol and triglycerides. GW590735 significantly increased HDL cholesterol, decreased LDL and VLDL cholesterol, and significantly reduced triglycerides. Maximal increases in HDL cholesterol were 37%, 53%, and 84% with fenofibrate, torcetrapib, and GW590735, respectively. These results, in mice that exhibit a more human-like lipid profile, demonstrate an improved lipid profile with torcetrapib, fenofibrate, and GW590735, and support the use of selective PPARalpha agonism for the treatment of lipid disorders. In addition, these data demonstrate the use of hApoB100/hCETP transgenic mice to identify, characterize, and screen compounds that increase HDL cholesterol.


Subject(s)
Anticholesteremic Agents/pharmacology , Apolipoprotein B-100/genetics , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol, HDL/blood , Cholesterol, LDL/blood , PPAR alpha/agonists , Animals , Cholesterol Ester Transfer Proteins/genetics , Cholesterol, VLDL/blood , Dose-Response Relationship, Drug , Fenofibrate/pharmacology , Humans , Mice , Mice, Transgenic , Propionates/pharmacology , Quinolines/administration & dosage , Quinolines/pharmacology , Thiazoles/pharmacology
13.
Exp Neurol ; 212(1): 53-62, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18462720

ABSTRACT

Mismatches between tissue perfusion-weighted imaging (PWI; an index of blood flow deficit) and cellular diffusion-weighted imaging (DWI; an index of tissue injury) provide information on potentially salvageable penumbra tissue in focal stroke and can identify "treatable" stroke patients. The present pre-clinical studies were conducted to: a.) Determine PWI (using perfusion delay) and DWI measurements in two experimental stroke models, b.) Utilize these measurements to characterize selective ET(A) receptor antagonism (i.e., determine efficacy, time-to-treatment and susceptibility to treatment in the different stroke models), and c.) Determine if increasing the reduced blood flow following a stroke is a mechanism of protection. Permanent middle cerebral artery occlusion (MCAO) or sham surgeries were produced in Sprague Dawley rats (SD; proximal MCAO; hypothesized to be a model of slowly evolving brain injury with a significant penumbra) and in spontaneously hypertensive rats (SHR; distal MCAO; hypothesized to be a model of rapidly evolving brain injury with little penumbra). Infusions of vehicle or SB 234551 (3, 10, or 30 microg/kg/min) were initiated at 0, 75, and/or 180 min post-surgery and maintained for the remainder of 24 h post-surgery. Hyper-intense areas of perfusion delay (PWI) in the forebrain were measured using Gadolinium (Gd) bolus contrast. DWI hyper-intense areas were also measured, and the degree of forebrain DWI-PWI mismatch was determined. Region specific analyses (ROI) were also conducted in the core ischemic and low perfusion/penumbra areas to provide indices of perfusion and changes in the degree of tissue perfusion due to SB 234551 treatment. At 24 h post-surgery, final infarct volume was measured by DWI and by staining forebrain slices. Following SD proximal MCAO, there was a significant mismatch in the ischemic forebrain PWI compared to DWI (PWI>DWI) at 60 min which was maintained up to 150 min (all p<0.05). By 24 h post-stroke, infarct volume was identical to the area of early perfusion deficit/PWI, suggesting a slow progression of infarct development that expanded into the significant, earlier cortical penumbra (i.e., model with salvageable tissue with potential for intervention). When SB 234551 was administered within the period of peak mismatch (i.e., at 75 min post-stroke), SB 234551 provided significant dose-related reductions in cortical (penumbral) progression to infarction (p<0.05). Cortical protection was related to an increased/normalization of the stroke-induced decrease in tissue perfusion in cortical penumbra areas (p<0.05). No SB 234551-induced changes in reduced tissue perfusion were observed in the striatum core ischemic area. Also, when SB-234551 was administered beyond the time of mismatch, no effect on cortical penumbra progression to infarct was observed. In comparison and strikingly different, following SHR distal MCAO there was no mismatch between PWI and DWI (PWI=DWI) as early as 60 min post-stroke, with this early change in SHR DWI being identical to the final infarct volume at 24 h, suggesting a rapidly occurring brain injury with little cortical penumbra (i.e., model with little salvageable tissue or potential for intervention). In distal MCAO, SB 234551 administered immediately at the time of stroke did not have any effect on infarct volume in SHR. These data demonstrate that selective blockade of ET(A) receptors is protective following proximal MCAO in SD (i.e. a model similar to "treatable" clinical patients). The protective mechanism appears to be due to enhanced collateral blood flow and salvage of penumbra. Therefore, the use of PWI-DWI mismatch signatures can identify treatable stroke models characterized by a salvageable penumbra and can define appropriate time to treatment protocols. In addition, tissue perfusion information obtained under these conditions might clarify mechanism of protection in the evaluation of protective compounds for focal stroke.


Subject(s)
Brain Infarction/drug therapy , Brain/drug effects , Diffusion Magnetic Resonance Imaging/methods , Dioxoles/pharmacology , Endothelin A Receptor Antagonists , Pyrazoles/pharmacology , Stroke/drug therapy , Animals , Brain/pathology , Brain/physiopathology , Brain Infarction/pathology , Brain Infarction/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/metabolism , Cerebral Arteries/physiopathology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Dioxoles/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Emergency Medical Services/standards , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/physiopathology , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pyrazoles/therapeutic use , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Receptor, Endothelin A/metabolism , Stroke/pathology , Stroke/physiopathology , Time Factors , Treatment Outcome
14.
Am J Physiol Endocrinol Metab ; 293(5): E1256-64, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17726146

ABSTRACT

Peroxisome proliferator-activated receptor-delta (PPARdelta) activation results in upregulation of genes associated with skeletal muscle fatty acid oxidation and mitochondrial uncoupling. However, direct, noninvasive assessment of lipid metabolism and mitochondrial energy coupling in skeletal muscle following PPARdelta stimulation has not been examined. Therefore, in this study we examined the response of a selective PPARdelta agonist (GW610742X at 5 or 100 mg.kg(-1).day(-1) for 8 days) on skeletal-muscle lipid metabolism and mitochondrial coupling efficiency in rats by using in vivo magnetic resonance spectroscopy (MRS). There was a decrease in the intramyocellular lipid-to-total creatine ratio as assessed by in vivo (1)H-MRS in soleus and tibialis anterior muscles by day 7 (reduced by 49 and 46%, respectively; P < 0.01) at the high dose. Following the (1)H-MRS experiment (day 8), [1-(13)C]glucose was administered to conscious rats to assess metabolism in the soleus muscle. The relative fat-vs.-carbohydrate oxidation rate increased in a dose-dependent manner (increased by 52 and 93% in the 5 and 100 mg.kg(-1).day(-1) groups, respectively; P < 0.05). In separate experiments where mitochondrial coupling was assessed in vivo (day 7), (31)P-MRS was used to measure hindlimb ATP synthesis and (13)C-MRS was used to measure the hindlimb tricarboxylic acid cycle flux (V(tca)). There was no alteration, at either dose, in mitochondrial coupling efficiency measured as the ratio of unidirectional ATP synthesis flux to V(tca). Soleus muscle GLUT4 expression was decreased by twofold, whereas pyruvate dehydrogenase kinase 4, carnitine palmitoyl transferase 1a, and uncoupling protein 2 and 3 expression was increased by two- to threefold at the high dose (P < 0.05). In summary, these are the first noninvasive measurements illustrating a selective PPARdelta-mediated decrease in muscle lipid content that was consistent with a shift in metabolic substrate utilization from carbohydrate to lipid. However, the mitochondrial-energy coupling efficiency was not altered in the presence of increased uncoupling protein expression.


Subject(s)
Isoindoles/pharmacology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , PPAR delta/agonists , Sulfonamides/pharmacology , Animals , Cholesterol/blood , Citric Acid Cycle/drug effects , Fatty Acids, Nonesterified/blood , Gene Expression , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Lipid Metabolism/drug effects , Magnetic Resonance Spectroscopy , Mitochondria, Muscle/metabolism , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , PPAR delta/pharmacology , RNA/chemistry , RNA/genetics , Rats , Rats, Sprague-Dawley , Triglycerides/blood
15.
Microvasc Res ; 63(3): 327-34, 2002 May.
Article in English | MEDLINE | ID: mdl-11969309

ABSTRACT

This investigation examined the effectiveness of a serine protease inhibitor (LEX032) when used as a cerebral protective agent after ischemia. Focal cerebral ischemia in the rat was produced by intravascular occlusion of the middle cerebral artery for a period of 30 min. Just prior to thread withdrawal (i.e., reperfusion), rats received an iv bolus administration of either vehicle or LEX032 (50 mg/kg), an optimal dose chosen based on previous studies. Somatosensory evoked potentials (SSEP's) were monitored prior to, during, and for a period of 60 min after removal of occlusion. The animals were allowed to recover for 24 h after the ischemic insult. Cortical activity in the occluded region, as assessed by SSEPs, returned much sooner in the LEX032-treated animals (10 +/- 6 min) than in the untreated animals (40 +/- 25 min). On a scale ranging from 0 to 3, with three indicating the most severely injured, the LEX032 animals had a significantly better neurologic score (1.0 +/- 0.9) than the untreated animals (2.3 +/- 0.5) 24 h after ischemia. The improved neurobehavior was related to a 55% reduction in brain injury as assessed by TTC staining. LEX032-treated animals had significantly (P < 0.01) smaller infarcts (115 +/- 40 mm3) compared to vehicle-treated animals (263 +/- 13 mm3). In a separate group of animals (n = 6/group), leukocyte infiltration, as evaluated by tissue myeloperoxidase activity (MPO U/g tissue wt), was also significantly (P < 0.05) lower in the LEX032-treated animals (1.4 +/- 0.3) compared to vehicle-treated animals (3.6 +/- 0.7). This data demonstrates that LEX032 reduces brain injury and suggests that serine protease inhibitors may reduce ischemia/reperfusion injury by decreasing leukocyte activation and migration.


Subject(s)
Brain Ischemia , Brain/pathology , Evoked Potentials , Peroxidase/metabolism , Recombinant Proteins/pharmacology , Serpins/metabolism , Serpins/pharmacology , Animals , Cell Adhesion , Cell Movement , Humans , Neutrophils/enzymology , Peroxidase/biosynthesis , Protease Inhibitors/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/prevention & control , Temperature , Time Factors
16.
Proc Natl Acad Sci U S A ; 100(2): 715-20, 2003 Jan 21.
Article in English | MEDLINE | ID: mdl-12522260

ABSTRACT

Sublethal insults can induce tolerance to subsequent stressors in neurons. As cell death activators such as ROS generation and decreased ATP can initiate tolerance, we tested whether other cellular elements normally associated with neuronal injury could add to this process. In an in vivo model of ischemic tolerance, we were surprised to observe widespread caspase 3 cleavage, without cell death, in preconditioned tissue. To dissect the preconditioning pathways activating caspases, and the mechanisms by which these proteases are held in check, we developed an in vitro model of excitotoxic tolerance. In this model, antioxidants and caspase inhibitors blocked ischemia-induced protection against N-methyl-d-aspartate toxicity. Moreover, agents that blocked preconditioning also attenuated induction of HSP 70; transient overexpression of a constitutive form of this protein prevented HSP 70 up-regulation and blocked tolerance. We outline a neuroprotective pathway where events normally associated with apoptotic cell death are critical for cell survival.


Subject(s)
Caspases/physiology , Ischemic Preconditioning , Neurons/pathology , Animals , Caspase 3 , Cells, Cultured , Enzyme Activation , HSP70 Heat-Shock Proteins/biosynthesis , N-Methylaspartate/pharmacology , Potassium Channels/physiology , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Rats , Reactive Oxygen Species , Time Factors , bcl-X Protein
17.
J Pharmacol Exp Ther ; 300(1): 314-23, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11752131

ABSTRACT

In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.


Subject(s)
Acetates/pharmacology , Antitussive Agents/pharmacology , Bronchial Hyperreactivity/prevention & control , Cough/prevention & control , Quinolines/pharmacology , Receptors, Neurokinin-3/antagonists & inhibitors , Receptors, Tachykinin/antagonists & inhibitors , Substance P/analogs & derivatives , Animals , Behavior, Animal , Bronchial Hyperreactivity/chemically induced , Calcium/metabolism , Central Nervous System/drug effects , Central Nervous System/metabolism , Citric Acid , Cloning, Molecular , Cough/chemically induced , Guinea Pigs , In Vitro Techniques , Iris/drug effects , Male , Mice , Mice, Inbred BALB C , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Neurokinin A/pharmacology , Peptide Fragments/pharmacology , Pupil/drug effects , Rabbits , Radioligand Assay , Rats , Recombinant Proteins/metabolism , Substance P/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL