ABSTRACT
While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.
Subject(s)
Caenorhabditis elegans , Microfluidics , Animals , Caenorhabditis elegans/metabolism , Proteome/analysis , Proteomics/methods , Magnetic Phenomena , Mammals/metabolismABSTRACT
Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.
Subject(s)
Caenorhabditis elegans , Proteome , Animals , Ion Mobility Spectrometry/methods , Microfluidics , Proteome/analysis , Proteomics/methodsABSTRACT
Digital microfluidics (DMF) is a technology suitable for bioanalytical applications requiring miniaturized, automated, and multiplexed liquid handling. Its use in LC-MS-based proteomics, however, has so far been limited to qualitative proteome analyses. This is mainly due to the need for detergents that enable facile, reproducible droplet movement, which are compatible with organic solvents commonly used in targeted chemical modifications of peptides. Aiming to implement isobaric peptide labeling, a widely applied technique allowing multiplexed quantitative proteome studies, on DMF devices, we tested different commercially available detergents. We identified the maltoside-based detergent 3-dodecyloxypropyl-1-ß-d-maltopyranoside (DDOPM) to enable facile droplet movement and show micelle formation even in the presence of organic solvent, which is necessary for isobaric tandem mass tag (TMT) labeling. The detergent is fully compatible with reversed phase LC-MS, not interfering with peptide identification. Tryptic digestion in the presence of DDOPM was more efficient than without detergent, resulting in more protein identifications. Using this detergent, we report the first on-DMF chip isobaric labeling strategy, with TMT-labeling efficiency comparable to conventional protocols. The newly developed labeling protocol was evaluated in the multiplexed analyses of a protein standard digest spiked into 25 cells. Finally, using only 75 cells per biological replicate, we were able to identify 39 proteins being differentially abundant after treatment of Jurkat T cells with the anticancer drug doxorubicin. In summary, we demonstrate an important step toward multiplexed quantitative proteomics on DMF, which, in combination with larger chip arrays and optimized hardware, could enable high throughput low cell number proteomics.
Subject(s)
Microfluidics , Proteomics , Cell Count , Humans , Peptides , Proteome , Tandem Mass SpectrometryABSTRACT
The identification and quantification of molecules involved in bacterial communication are major prerequisites for the understanding of interspecies interactions at the molecular level. We developed a procedure allowing the determination of 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) and the virulence factor pyocyanin (PYO) formed by the Gram-negative bacterium Pseudomonas aeruginosa. The method is based on dispersive liquid-liquid microextraction from small supernatant volumes (below 10 µL) followed by quantitative matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The use of ionic liquid matrix led to a lowered limit of detection for pyocyanin and, due to suppression of matrix background signals, easy to interpret mass spectra compared to crystalline matrices. Using an isotope-labeled pyocyanin standard synthesized in small-scale synthesis, quantitative analysis spanning approximately one order of magnitude (0.5 to 250 fmol) was feasible. The method was successfully applied to the detection of the signaling molecules PQS and HHQ in cultures of P. aeruginosa strains isolated from sputum of cystic fibrosis patients and allowed a highly sensitive quantification of PYO from these cultures. Hence, the developed method bears the potential to be used for screening purposes in clinical settings and will help to decipher the molecular basis of bacterial communication. Graphical abstract Ionic liquid matrices for the detection and quantification of the toxin pyocyanin and other signaling molecules from P. aeruginosa by MALDI MS.
Subject(s)
4-Quinolones/analysis , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Pseudomonas aeruginosa/chemistry , Pyocyanine/analysis , Quinolones/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Cystic Fibrosis/microbiology , Humans , Isotope Labeling/methods , Pseudomonas aeruginosa/physiology , Quorum Sensing , Virulence Factors/analysisABSTRACT
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
ABSTRACT
Most microbes evolve faster than their hosts and should therefore drive evolution of host-microbe interactions. However, relatively little is known about the characteristics that define the adaptive path of microbes to host association. Here we identified microbial traits that mediate adaptation to hosts by experimentally evolving the free-living bacterium Pseudomonas lurida with the nematode Caenorhabditis elegans as its host. After ten passages, we repeatedly observed the evolution of beneficial host-specialist bacteria, with improved persistence in the nematode being associated with increased biofilm formation. Whole-genome sequencing revealed mutations that uniformly upregulate the bacterial second messenger, cyclic diguanylate (c-di-GMP). We subsequently generated mutants with upregulated c-di-GMP in different Pseudomonas strains and species, which consistently increased host association. Comparison of pseudomonad genomes from various environments revealed that c-di-GMP underlies adaptation to a variety of hosts, from plants to humans. This study indicates that c-di-GMP is fundamental for establishing host association.
Subject(s)
Escherichia coli Proteins , Nematoda , Animals , Humans , Escherichia coli Proteins/genetics , Bacterial Proteins/genetics , Symbiosis , BacteriaABSTRACT
While LC-MS-based proteomics with high nanograms to micrograms of total protein has become routine, the analysis of samples derived from low cell numbers is challenged by factors such as sample losses, or difficulties encountered with the manual manipulation of small liquid volumes. Digital microfluidics (DMF) is an emerging technique for miniaturized and automated droplet manipulation, which has been proposed as a promising tool for proteomic sample preparation. However, proteome analysis of samples prepared on-chip by DMF has previously been unfeasible, due to incompatibility with down-stream LC-MS instrumentation. To overcome these limitations, we here developed protocols for bottom-up LC-MS based proteomics sample preparation of as little as 100 mammalian cells on a commercially available digital microfluidics device. To this end, we developed effective cell lysis conditions optimized for DMF, as well as detergent-buffer systems compatible with downstream proteolytic digestion on DMF chips and subsequent LC-MS analysis. A major step was the introduction of the single-pot, solid-phase-enhanced sample preparation (SP3) approach on-chip, which allowed the removal of salts and anti-fouling polymeric detergents, thus rendering sample preparation by DMF compatible with LC-MS-based proteome analysis. Application of DMF-SP3 to the proteome analysis of Jurkat T cells led to the identification of up to 2500 proteins from approximately 500 cells, and up to 1200 proteins from approximately 100 cells on an Orbitrap mass spectrometer, emphasizing the high compatibility of DMF-SP3 with low protein input and minute volumes handled by DMF. Taken together, we demonstrate the first sample preparation workflow for proteomics on a DMF chip device reported so far, allowing the sensitive analysis of limited biological material.
Subject(s)
Magnetics , Proteome/analysis , Proteomics/methods , Surface-Active Agents/chemistry , Automation , Chromatography, High Pressure Liquid , Humans , Jurkat Cells , Mass Spectrometry , Microfluidics/instrumentation , Miniaturization , Proteome/isolation & purification , Proteomics/instrumentationABSTRACT
N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. Graphical abstract á .