Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063183

ABSTRACT

Juvenile polyposis syndrome (JPS) is an inherited autosomal dominant condition that predisposes to the development of juvenile polyps throughout the gastrointestinal (GI) tract, and it poses an increased risk of GI malignancy. Germline causative variants were identified in the SMAD4 gene in a subset (20%) of JPS cases. Most SMAD4 germline genetic variants published to date are missense, nonsense, and frameshift mutations. SMAD4 germline alterations predicted to result in aberrant splicing have rarely been reported. Here, we report two unrelated Italian families harboring two different SMAD4 intronic variants, c.424+5G>A and c.425-9A>G, which are clinically associated with colorectal cancer and/or juvenile GI polyps. In silico prediction analysis, in vitro minigene assays, and RT-PCR showed that the identified variants lead to aberrant SMAD4 splicing via the exonization of intronic nucleotides, resulting in a premature stop codon. This is expected to cause the production of a truncated protein. This study expands the landscape of SMAD4 germline genetic variants associated with GI polyposis and/or cancer. Moreover, it emphasizes the importance of the functional characterization of SMAD4 splicing variants through RNA analysis, which can provide new insights into genetic disease variant interpretation, enabling tailored genetic counseling, management, and surveillance of patients with GI polyposis and/or cancer.


Subject(s)
Intestinal Polyposis , Neoplastic Syndromes, Hereditary , RNA Splicing , Smad4 Protein , Adult , Female , Humans , Male , Middle Aged , Germ-Line Mutation , Intestinal Polyposis/genetics , Intestinal Polyposis/congenital , Introns/genetics , Neoplastic Syndromes, Hereditary/genetics , Pedigree , RNA Splicing/genetics , Smad4 Protein/genetics
2.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273459

ABSTRACT

Background: The minor G-allele of FOXO3 rs2802292 is associated with human longevity. The aim of this study was to test the protective effect of the variant against the association with type 2 Diabetes and NAFLD. Methods: rs2802292 was genotyped in a large population of middle-aged subjects (n = 650) from a small city in Southern Italy. All participants were interviewed to collect information about lifestyle and dietary habits; clinical characteristics were recorded, and blood samples were collected from all subjects. The association between rs2802292 and NAFLD or diabetes was tested using a logistic model and mediation analysis adjusted for covariates. Results: Overall, the results indicated a statistical association between diabetes and rs2802292, especially for the TT genotype (OR = 2.14, 1.01 to 4.53 95% C.I., p = 0.05) or in any case for those who possess the G-allele (OR = 0.45, 0.25 to 0.81 95% C.I., p = 0.008). Furthermore, we found a mediation effect of rs2802292 on diabetes (as mediator) and NAFLD. There is no direct relationship between rs2802292 and NAFLD, but the effect is direct (ß = 0.10, -0.003 to 0.12 95% C.I., p = 0.04) on diabetes, but only in TT genotypes. Conclusions: The data on our cohort indicate that the longevity-associated FOXO3 variant may have protective effects against diabetes and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Forkhead Box Protein O3 , Genetic Predisposition to Disease , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Italy/epidemiology , Middle Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Forkhead Box Protein O3/genetics , Cohort Studies , Genotype , Alleles , Adult
3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108756

ABSTRACT

Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/diagnosis , Early Detection of Cancer , Chemoprevention , Colonoscopy , Adenoma/prevention & control
4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139222

ABSTRACT

Classic galactosemia is an autosomal recessive inherited liver disorder of carbohydrate metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT). While a galactose-restricted diet is lifesaving, most patients still develop long-term complications. In this study, we report on a two-week-old female patient who is a compound heterozygote for a known pathogenic variant (p.K285N) and a novel missense variant (p.A303D) in the GALT gene. Segregation analysis showed that the patient inherited the p.K285N pathogenic variant from her father and the p.A303D variant from her mother. A bioinformatics analysis to predict the impact of the p.A303D missense variant on the structure and stability of the GALT protein revealed that it may be pathogenic. Based on this finding, we performed a literature review of all GALT missense variants identified in homozygous and compound heterozygous galactosemia patients carrying the p.K285N pathogenic variant to explore their molecular effects on the clinical phenotype of the disease. Our analysis revealed that these missense variants are responsible for a wide range of molecular defects. This study expands the clinical and mutational spectrum in classic galactosemia and reinforces the importance of understanding the molecular consequences of genetic variants to incorporate genetic analysis into clinical care.


Subject(s)
Galactosemias , UTP-Hexose-1-Phosphate Uridylyltransferase , Female , Humans , Galactose , Galactosemias/genetics , Mutation , Mutation, Missense , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
5.
Genome Res ; 28(6): 910-920, 2018 06.
Article in English | MEDLINE | ID: mdl-29776991

ABSTRACT

For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates.


Subject(s)
Chromosome Inversion/genetics , Genome, Human/genetics , Primates/genetics , Sequence Inversion/genetics , Animals , Evolution, Molecular , Humans , Molecular Sequence Annotation , Pan troglodytes/genetics
6.
Chembiochem ; 22(9): 1597-1608, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33400854

ABSTRACT

SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 µM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 µM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Allosteric Site , Binding Sites , Cell Line, Tumor , Drug Evaluation, Preclinical , HSP90 Heat-Shock Proteins/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Humans , Kinetics , Ligands , Molecular Dynamics Simulation , Piperidines/chemistry , Piperidines/metabolism , Protein Binding , Stereoisomerism
7.
Clin Genet ; 99(3): 425-429, 2021 03.
Article in English | MEDLINE | ID: mdl-33236357

ABSTRACT

mTOR dysregulation has been described in pathological conditions, such as cardiovascular and overgrowth disorders. Here we report on the first case of a patient with a complex congenital heart disease and an interstitial duplication in the short arm of chromosome 1, encompassing part of the mTOR gene. Our results suggest that an intragenic mTOR microduplication might play a role in the pathogenesis of non-syndromic congenital heart defects (CHDs) due to an upregulation of mTOR/Rictor and consequently an increased phosphorylation of PI3K/AKT and MEK/ERK signaling pathways in patient-derived amniocytes. This is the first report which shows a causative role of intragenic mTOR microduplication in the etiology of an isolated complex CHD.


Subject(s)
Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Chromosomes, Human, Pair 1 , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Heart Defects, Congenital/diagnosis , Humans , Infant , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Up-Regulation
8.
J Med Genet ; 57(5): 356-360, 2020 05.
Article in English | MEDLINE | ID: mdl-31591141

ABSTRACT

Germline mutations of the APC gene, which encodes a multidomain protein of 2843 amino acid residues, cause familial adenomatous polyposis (FAP). Three FAP clinical variants are correlated with the location of APC mutations: (1) classic FAP with profuse polyposis (>1000 adenomas), associated with mutations from codon 1250 to 1424; (2) attenuated FAP (<100 adenomas), associated with mutations at APC extremities (before codon 157 and after codon 1595); (3) classic FAP with intermediate colonic polyposis (100-1000 adenomas), associated with mutations located in the remaining part of APC In an effort to decipher the clinical phenotype associated with APC C-terminal germline truncating mutations in patients with FAP, after screening APC mutations in one family whose members (n=4) developed gastric polyposis, colon oligo-polyposis and desmoid tumours, we performed a literature meta-analysis of clinically characterised patients (n=97) harbouring truncating mutations in APC C-terminus. The APC distal mutations identified in this study cluster with a phenotype characterised by colon oligo-polyposis, diffuse gastric polyposis and desmoid tumours. In conclusion, we describe a novel FAP clinical variant, which we propose to refer to as Gastric Polyposis and Desmoid FAP, that may require tailored management.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/genetics , Genetic Predisposition to Disease , Stomach Neoplasms/genetics , Adenomatous Polyposis Coli/epidemiology , Adenomatous Polyposis Coli/pathology , Adult , Female , Fibromatosis, Aggressive/pathology , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , Pedigree , Phenotype , Stomach Neoplasms/epidemiology , Stomach Neoplasms/pathology
9.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201893

ABSTRACT

Lynch syndrome is a hereditary cancer-predisposing syndrome caused by germline defects in DNA mismatch repair (MMR) genes such as MLH1, MSH2, MSH6, and PMS2. Carriers of pathogenic mutations in these genes have an increased lifetime risk of developing colorectal cancer (CRC) and other malignancies. Despite intensive surveillance, Lynch patients typically develop CRC after 10 years of follow-up, regardless of the screening interval. Recently, three different molecular models of colorectal carcinogenesis were identified in Lynch patients based on when MMR deficiency is acquired. In the first pathway, adenoma formation occurs in an MMR-proficient background, and carcinogenesis is characterized by APC and/or KRAS mutation and IGF2, NEUROG1, CDK2A, and/or CRABP1 hypermethylation. In the second pathway, deficiency in the MMR pathway is an early event arising in macroscopically normal gut surface before adenoma formation. In the third pathway, which is associated with mutations in CTNNB1 and/or TP53, the adenoma step is skipped, with fast and invasive tumor growth occurring in an MMR-deficient context. Here, we describe the association between molecular and histological features in these three routes of colorectal carcinogenesis in Lynch patients. The findings summarized in this review may guide the use of individualized surveillance guidelines based on a patient's carcinogenesis subtype.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Carcinogenesis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/etiology , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Models, Biological , Phenotype , Risk Factors
10.
Nucleic Acids Res ; 46(11): 5587-5600, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29733381

ABSTRACT

The HSF and FOXO families of transcription factors play evolutionarily conserved roles in stress resistance and lifespan. In humans, the rs2802292 G-allele at FOXO3 locus has been associated with longevity in all human populations tested; moreover, its copy number correlated with reduced frequency of age-related diseases in centenarians. At the molecular level, the intronic rs2802292 G-allele correlated with increased expression of FOXO3, suggesting that FOXO3 intron 2 may represent a regulatory region. Here we show that the 90-bp sequence around the intronic single nucleotide polymorphism rs2802292 has enhancer functions, and that the rs2802292 G-allele creates a novel HSE binding site for HSF1, which induces FOXO3 expression in response to diverse stress stimuli. At the molecular level, HSF1 mediates the occurrence of a promoter-enhancer interaction at FOXO3 locus involving the 5'UTR and the rs2802292 region. These data were confirmed in various cellular models including human HAP1 isogenic cell lines (G/T). Our functional studies highlighted the importance of the HSF1-FOXO3-SOD2/CAT/GADD45A cascade in cellular stress response and survival by promoting ROS detoxification, redox balance and DNA repair. Our findings suggest the existence of an HSF1-FOXO3 axis in human cells that could be involved in stress response pathways functionally regulating lifespan and disease susceptibility.


Subject(s)
Enhancer Elements, Genetic , Forkhead Box Protein O3/genetics , Heat Shock Transcription Factors/metabolism , Polymorphism, Single Nucleotide , Stress, Physiological/genetics , Transcriptional Activation , 5' Untranslated Regions , Alleles , Binding Sites , Cell Line , Cell Survival , Cells, Cultured , Forkhead Box Protein O3/biosynthesis , Humans , Introns , Longevity/genetics , Promoter Regions, Genetic
12.
Cells ; 13(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39195204

ABSTRACT

Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific multigene panels by next-generation sequencing (NGS) technologies has enabled the identification of several recurrent pathogenic variants with established functional consequences. In parallel, rare genetic variants that are not characterized and are, therefore, called variants of uncertain significance (VUSs) have also been detected. The classification of VUSs is a challenging task because each amino acid has specific biochemical properties and uniquely contributes to the structural stability and functional activity of proteins. In this scenario, the ability to computationally predict the effect of a VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the potential impact of a VUS and support additional clinical evaluation. This approach can further benefit from recent advances in artificial intelligence-based technologies. In this review, we describe the main in silico prediction tools that can be used to evaluate the structural and functional impact of VUSs and provide examples of their application in the analysis of gene variants involved in hereditary CRC syndromes.


Subject(s)
Colorectal Neoplasms , Computer Simulation , Humans , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Variation , Mutation/genetics
13.
J Exp Clin Cancer Res ; 43(1): 151, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812026

ABSTRACT

BACKGROUND: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS: In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS: Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS: Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.


Subject(s)
DNA Damage , DNA Repair , Drug Resistance, Neoplasm , Histone-Lysine N-Methyltransferase , Humans , Animals , Mice , DNA Repair/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female
14.
Cell Biosci ; 13(1): 223, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041178

ABSTRACT

BACKGROUND: Activation of the Wnt pathway has been linked to colorectal cancer (CRC). Previous reports suggest that Wnt3a can activate p38. Besides, p38α feeds into the canonical Wnt/ß-catenin pathway by inhibiting GSK3ß through phosphorylation. Recently, we identified p38α as a new druggable member of ß-catenin chromatin-associated kinase complexes in CRC. METHODS: The functional relationship between p38α and ß-catenin was characterized in CRC cells, patient-derived CRC stem cells, patient-derived tumor intestinal organoids, and in vivo models (C57BL/6-APCMin/+ mice). The role of p38α in ß-catenin transcriptional activity was assessed by pharmacological inhibition with ralimetinib. RESULTS: We used the GSK3ß inhibitor TWS-119, which promotes the activation of Wnt signaling, to uncouple p38α nuclear/cytoplasmatic functions in the Wnt pathway. Upon GSK3ß inhibition, nuclear p38α phosphorylates ß-catenin at residues S111 and T112, allowing its binding to promoter regions of Wnt target genes and the activation of a transcriptional program implicated in cancer progression. If p38α is pharmacologically inhibited in addition to GSK3ß, ß-catenin is prevented from promoting target gene transcription, which is expected to impair carcinogenesis. CONCLUSIONS: p38α seems to play a dual role as a member of the ß-catenin destruction complex and as a ß-catenin chromatin-associated kinase in CRC. This finding may help elucidate mechanisms contributing to human colon tumor pathogenesis and devise new strategies for personalized CRC treatment.

15.
Comput Struct Biotechnol J ; 21: 5240-5248, 2023.
Article in English | MEDLINE | ID: mdl-37954147

ABSTRACT

SMDY3 is a histone-lysine N-methyltransferase involved in several oncogenic processes and is believed to play a major role in various cancer hallmarks. Recently, we identified ATM, BRCA2, CHK2, MTOR, BLM, MET, AMPK, and p130 as direct SMYD3 interactors by taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes to systematically search the human proteome. Here, we used this innovative approach to identify further SMYD3-interacting proteins involved in crucial cancer pathways and found that the chromatin remodeling factors EP300 and TRRAP interact directly with SMYD3, thus linking SMYD3 to the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Of note, we validated these interactions in gastrointestinal cancer cell lines, including HCT-116 cells, which harbor a C-terminal truncating mutation in EP300, suggesting that EP300 binds to SMYD3 via its N-terminal region. While additional studies are required to ascertain the functional mechanisms underlying these interactions and their significance, the identification of two novel SMYD3 interactors involved in epigenetic cancer hallmark pathways adds important pieces to the puzzle of how SMYD3 exerts its oncogenic role.

16.
Cells ; 12(22)2023 11 17.
Article in English | MEDLINE | ID: mdl-37998381

ABSTRACT

Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells.


Subject(s)
Breast Neoplasms , Zinostatin , Humans , Female , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , DNA Damage , DNA , Histone-Lysine N-Methyltransferase/genetics
17.
Cells ; 12(20)2023 10 18.
Article in English | MEDLINE | ID: mdl-37887325

ABSTRACT

Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness. Unfortunately, treatment strategies targeting MET are still limited, with a proportion of patients responding to therapy but later developing resistance. Here, we showed that MET is a molecular partner of the SMYD3 methyltransferase in GC cells. Moreover, we found that SMYD3 pharmacological inhibition affects the HGF/MET downstream signaling pathway. Extensive cellular analyses in GC models indicated that EM127, a novel active site-selective covalent SMYD3 inhibitor, can be used as part of a synergistic approach with MET inhibitors in order to enhance the targeting of the HGF/MET pathway. Importantly, our data were confirmed in a 3D GC cell culture system, which was used as a surrogate to evaluate stemness characteristics. Our findings identify SMYD3 as a promising therapeutic target to impair the HGF/MET pathway for the treatment of GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Signal Transduction , Hepatocyte Growth Factor , Histone-Lysine N-Methyltransferase/metabolism
18.
Cancers (Basel) ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894428

ABSTRACT

Lynch syndrome (LS) is an inherited cancer susceptibility syndrome caused by germline mutations in a DNA mismatch repair (MMR) gene or in the EPCAM gene. LS is associated with an increased lifetime risk of colorectal cancer (CRC) and other malignancies. The screening algorithm for LS patient selection is based on the identification of CRC specimens that have MMR loss/high microsatellite instability (MSI-H) and are wild-type for BRAFV600. Here, we sought to clinically and molecularly characterize patients with these features. From 2017 to 2023, 841 CRC patients were evaluated for MSI and BRAFV600E mutation status, 100 of which showed MSI-H. Of these, 70 were wild-type for BRAFV600. Among these 70 patients, 30 were genetically tested for germline variants in hereditary cancer predisposition syndrome genes. This analysis showed that 19 of these 30 patients (63.3%) harbored a germline pathogenic or likely pathogenic variant in MMR genes, 2 (6.7%) harbored a variant of unknown significance (VUS) in MMR genes, 3 (10%) harbored a VUS in other cancer-related genes, and 6 (20%) were negative to genetic testing. These findings highlight the importance of personalized medicine for tailored genetic counseling, management, and surveillance of families with LS and other hereditary cancer syndromes.

19.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201484

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.

20.
Comput Struct Biotechnol J ; 20: 1860-1875, 2022.
Article in English | MEDLINE | ID: mdl-35495117

ABSTRACT

SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.

SELECTION OF CITATIONS
SEARCH DETAIL