Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Biol Evol ; 37(10): 2887-2899, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32437540

ABSTRACT

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.


Subject(s)
Chaperone-Mediated Autophagy , Evolution, Molecular , Lysosomal-Associated Membrane Protein 2/genetics , Oryzias/genetics , Animals , Carbohydrate Metabolism , Cell Line , Exons , Fibroblasts/physiology , Humans , Lipid Metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Mice , Oryzias/metabolism
2.
Autophagy ; 18(10): 2443-2458, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35266854

ABSTRACT

The endolysosomal system not only is an integral part of the cellular catabolic machinery that processes and recycles nutrients for synthesis of biomaterials, but also acts as signaling hub to sense and coordinate the energy state of cells with growth and differentiation. Lysosomal dysfunction adversely influences vesicular transport-dependent macromolecular degradation and thus causes serious problems for human health. In mammalian cells, loss of the lysosome associated membrane proteins LAMP1 and LAMP2 strongly affects autophagy and cholesterol trafficking. Here we show that the previously uncharacterized Drosophila Lamp1 is a bona fide ortholog of vertebrate LAMP1 and LAMP2. Surprisingly and in contrast to lamp1 lamp2 double-mutant mice, Drosophila Lamp1 is not required for viability or autophagy, suggesting that fly and vertebrate LAMP proteins acquired distinct functions, or that autophagy defects in lamp1 lamp2 mutants may have indirect causes. However, Lamp1 deficiency results in an increase in the number of acidic organelles in flies. Furthermore, we find that Lamp1 mutant larvae have defects in lipid metabolism as they show elevated levels of sterols and diacylglycerols (DAGs). Because DAGs are the main lipid species used for transport through the hemolymph (blood) in insects, our results indicate broader functions of Lamp1 in lipid transport. Our findings make Drosophila an ideal model to study the role of LAMP proteins in lipid assimilation without the confounding effects of their storage and without interfering with autophagic processes.Abbreviations: aa: amino acid; AL: autolysosome; AP: autophagosome; APGL: autophagolysosome; AV: autophagic vacuole (i.e. AP and APGL/AL); AVi: early/initial autophagic vacuoles; AVd: late/degradative autophagic vacuoles; Atg: autophagy-related; CMA: chaperone-mediated autophagy; Cnx99A: Calnexin 99A; DAG: diacylglycerol; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; FB: fat body; HDL: high-density lipoprotein; Hrs: Hepatocyte growth factor regulated tyrosine kinase substrate; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LDL: low-density lipoprotein; Lpp: lipophorin; LTP: Lipid transfer particle; LTR: LysoTracker Red; MA: macroautophagy; MCC: Manders colocalization coefficient; MEF: mouse embryonic fibroblast MTORC: mechanistic target of rapamycin kinase complex; PV: parasitophorous vacuole; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; Snap: Synaptosomal-associated protein; st: starved; TAG: triacylglycerol; TEM: transmission electron microscopy; TFEB/Mitf: transcription factor EB; TM: transmembrane domain; tub: tubulin; UTR: untranslated region.


Subject(s)
Autophagy , Diglycerides , Amino Acids/metabolism , Animals , Autophagy/genetics , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Calnexin/metabolism , Diglycerides/metabolism , Diglycerides/pharmacology , Drosophila/metabolism , Drosophila Proteins , Endosomal Sorting Complexes Required for Transport/metabolism , Ethylmaleimide/metabolism , Ethylmaleimide/pharmacology , Fibroblasts/metabolism , Hepatocyte Growth Factor/metabolism , Humans , Lipoproteins, HDL/metabolism , Lipoproteins, HDL/pharmacology , Lipoproteins, LDL/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Mammals/metabolism , Mice , Protein-Tyrosine Kinases/metabolism , SNARE Proteins/metabolism , Sirolimus/pharmacology , Sterols/metabolism , Sterols/pharmacology , Triglycerides/metabolism , Tubulin/metabolism , Untranslated Regions
3.
Autophagy ; 16(10): 1918-1920, 2020 10.
Article in English | MEDLINE | ID: mdl-32772633

ABSTRACT

Chaperone-mediated autophagy (CMA), as one of the main pathways of lysosomal catabolism, plays essential roles for the maintenance of cellular homeostasis. To date, the absence of any identifiable LAMP2A - the necessary and limiting protein required for CMA - in non-tetrapod lineages, led to the paradigm that this cellular process was restricted to mammals and birds. The recent findings of Lescat et al., demonstrating the existence of a CMA activity in fish, now reshuffle the cards regarding how the entire evolution of CMA function should be considered and appreciated across metazoans. Hence, beyond challenging the current tetrapod-centered accepted view, the work of Lescat et al. tackles the possibility - or the compelling need - of using complementary and powerful genetic models, such as zebrafish or medaka, for studying this fundamental function from an evolutionary perspective.


Subject(s)
Autophagy , Chaperone-Mediated Autophagy , Animals , Autophagy/genetics , Lighting , Lysosomes , Molecular Chaperones/genetics
4.
Elife ; 92020 11 16.
Article in English | MEDLINE | ID: mdl-33191918

ABSTRACT

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.


Subject(s)
Peripheral Nervous System/embryology , Urochordata/embryology , Animals , Gene Expression Regulation, Developmental/physiology , Larva/growth & development , Species Specificity , Urochordata/genetics
5.
Autophagy ; 14(7): 1267-1270, 2018.
Article in English | MEDLINE | ID: mdl-29929419

ABSTRACT

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis essential for the control of intermediary metabolism. So far, the absence of any identifiable LAMP2A - a necessary and limiting protein for CMA - outside of the tetrapod clade, led to the paradigm that this cellular function was (presumably) restricted to mammals and birds. However, after we identified expressed sequences displaying high sequence homology with the mammalian LAMP2A in several fish species, our findings challenge that view and suggest that CMA likely appeared much earlier during evolution than initially thought. Hence, our results do not only shed an entirely new light on the evolution of CMA, but also bring new perspectives on the possible use of complementary genetic models, such as zebrafish or medaka for studying CMA function from a comparative angle/view.


Subject(s)
Autophagy , Birds/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Amino Acid Sequence , Animals , Birds/genetics , Gene Expression Regulation , Mammals/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL