Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Am J Med Genet C Semin Med Genet ; : e32099, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016117

ABSTRACT

COL4A1/2 variants are associated with highly variable multiorgan manifestations. Depicting the whole clinical spectrum of COL4A1/2-related manifestations is challenging, and there is no consensus on management and preventative strategies. Based on a systematic review of current evidence on COL4A1/2-related disease, we developed a clinical questionnaire that we administered to 43 individuals from 23 distinct families carrying pathogenic variants. In this cohort, we extended ophthalmological and cardiological examinations to asymptomatic individuals and those with only limited or mild, often nonspecific, clinical signs commonly occurring in the general population (i.e., oligosymptomatic). The most frequent clinical findings emerging from both the literature review and the questionnaire included stroke (203/685, 29.6%), seizures or epilepsy (199/685, 29.0%), intellectual disability or developmental delay (168/685, 24.5%), porencephaly/schizencephaly (168/685, 24.5%), motor impairment (162/685, 23.6%), cataract (124/685, 18.1%), hematuria (63/685, 9.2%), and retinal arterial tortuosity (58/685, 8.5%). In oligosymptomatic and asymptomatic carriers, ophthalmological investigations detected retinal vascular tortuosity (5/13, 38.5%), dysgenesis of the anterior segment (4/13, 30.8%), and cataract (2/13, 15.4%), while cardiological investigations were unremarkable except for mild ascending aortic ectasia in 1/8 (12.5%). Our multimodal approach confirms highly variable penetrance and expressivity in COL4A1/2-related conditions, even at the intrafamilial level with neurological involvement being the most frequent and severe finding in both children and adults. We propose a protocol for prevention and management based on individualized risk estimation and periodic multiorgan evaluations.

2.
Hum Mol Genet ; 31(6): 929-941, 2022 03 21.
Article in English | MEDLINE | ID: mdl-34622282

ABSTRACT

Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.


Subject(s)
Caenorhabditis elegans Proteins , Dyskinesias , Acetylcholinesterase/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caffeine/pharmacology , Drug Evaluation, Preclinical , Dyskinesias/drug therapy , Dyskinesias/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/pharmacology , GTP-Binding Proteins/genetics , Mutation , Neurotransmitter Agents/metabolism
3.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38502237

ABSTRACT

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Subject(s)
Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
4.
Mov Disord ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685873

ABSTRACT

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

5.
Neurobiol Dis ; 180: 106093, 2023 05.
Article in English | MEDLINE | ID: mdl-36948260

ABSTRACT

Untreated phenylketonuria (PKU) patients and PKU animal models show hypomyelination in the central nervous system and white matter damages, which are accompanied by myelin basic protein (MBP) impairment. Despite many assumptions, the primary explanation of the mentioned cerebral outcomes remains elusive. In this study, MBP protein and mRNA expression on brains of wild type (WT) and phenylketonuric (ENU2) mice were analyzed throughout mice lifespan (14-60-180-270-360-540 post-natal days, PND). The results confirmed the low MBP expression at first PND times, while revealed an unprecedented progressive MBP protein expression recovery in aged ENU2 mice. Unexpectedly, unaltered MBP mRNA expression between WT and ENU2 was always observed. Additionally, for the same time intervals, a significant decrease of the phenylalanine concentration in the peripheral blood and brain of ENU2 mice was detected, to date, for the first time. In this scenario, a translational hindrance of MBP during initial and late cerebral development in ENU2 mice was hypothesized, leading to the execution of a microRNA microarray analysis on 60 PND brains, which was followed by a proteomic assay on 60 and 360 PND brains in order to validate in silico miRNA-target predictions. Taken together, miR-218-1-3p, miR-1231-3p and miR-217-5p were considered as the most impactful microRNAs, since a downregulation of their potential targets (MAG, CNTNAP2 and ANLN, respectively) can indirectly lead to a low MBP protein expression. These miRNAs, in addition, follow an opposite expression trend compared to MBP during adulthood, and their target proteins revealed a complete normalization in aged ENU2 mice. In conclusion, these results provide a new perspective on the PKU pathophysiology understanding and on a possible treatment, emphasizing the potential modulating role of differentially expressed microRNAs in MBP expression on PKU brains during PKU mouse lifespan.


Subject(s)
MicroRNAs , Phenylketonurias , Mice , Animals , MicroRNAs/genetics , Myelin Basic Protein , Longevity , Proteomics , Phenylketonurias/genetics , Phenylketonurias/complications , Phenylketonurias/metabolism , RNA, Messenger , Membrane Proteins , Nerve Tissue Proteins
6.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32668217

ABSTRACT

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Subject(s)
Genetic Predisposition to Disease/genetics , Phenylketonurias/epidemiology , Phenylketonurias/genetics , Alleles , Biopterins/analogs & derivatives , Biopterins/genetics , Europe , Gene Frequency/genetics , Genetic Association Studies/methods , Genotype , Homozygote , Humans , Mutation/genetics , Phenotype , Phenylalanine/blood , Phenylalanine Hydroxylase/genetics , Phenylketonurias/blood
7.
Mol Genet Metab ; 140(3): 107684, 2023 11.
Article in English | MEDLINE | ID: mdl-37672857

ABSTRACT

The main neurological, cognitive, and behavioural consequences of phenylketonuria have been eradicated thanks to new-born screening and Phe-restricted diet therapy. However, the effects of high phenylalanine levels during adolescence and adulthood on neurocognitive functions remain a concern. This systematic review aimed at collecting clinical data suggesting the safest metabolic target for early treated PKU during the second decade of life. Twenty studies met the inclusion criteria for full-text review. Relevant studies included papers that (a) examined the relationship between metabolic control and neurocognitive functions during adolescence or (b) investigated the impact of metabolic control in adolescence on adult outcomes. Most studies showed a positive correlation between metabolic control during adolescence and neurocognitive outcomes across ages. This was true both for IQ and executive functions, although data on executive functions were less clear, and it remains to be established whether they are more vulnerable to Phe than IQ. Taken together present evidence confirm brain vulnerability to Phe during adolescence and suggests that low average Phe levels and low Phe fluctuations should be maintained throughout life. While results are fully compatible with current European recommendations, clinical and methodological limitations coupled with remarkable interindividual variability prevented a clear identification of a safe threshold for Phe blood levels during adolescence.


Subject(s)
Cognition , Phenylketonurias , Adult , Humans , Adolescent , Neuropsychological Tests , Executive Function , Brain , Phenylketonurias/drug therapy , Phenylalanine
8.
Mol Genet Metab ; 139(2): 107588, 2023 06.
Article in English | MEDLINE | ID: mdl-37149991

ABSTRACT

Lacking direct neuropathological data, neuroimaging exploration has become the most powerful tool to give insight into pathophysiological alterations of early-treated PKU (ETPKU) patients. We conducted a systematic review of neuroimaging studies in ETPKU patients to explore 1) the occurrence of consistent neuroimaging alterations; 2) the relationship between them and neurological and cognitive disorders; 3) the contribution of neuroimaging in the insight of neuropathological background of ETPKU subjects; 4) whether brain neuroimaging may provide additional information in the monitoring of the disease course. Thirty-eight studies met the inclusion criteria for the full-text review, including morphological T1/T2 sequences, diffusion brain imaging (DWI/DTI) studies, brain MRI volumetric, functional neuroimaging studies, neurotransmission and brain energetic imaging studies. Non-progressive brain white matter changes were the most frequent and precocious alterations. As confirmed in hundreds of young adults with ETPKU, they affect over 90% of ETPKU patients. Consistent correlations are emerging between microstructural alteration (as detected by DWI/DTI) and metabolic control, which have also been confirmed in a few interventional trials. Volumetric studies detected later and less consistent cortical and subcortical grey matter alterations, which seem to be influenced by the patient's age and metabolic control. The few functional neuroimaging studies so far showed preliminary but interesting data about cortical activation patterns, skill performance, and brain connectivity. Further research is mandatory in these more complex areas. Recurrent methodological limitations include restricted sample sizes concerning the clinical variability of the disease, large age-range, variable measures of metabolic control, and prevalence of cross-sectional rather than longitudinal interventional studies.


Subject(s)
Phenylketonurias , White Matter , Young Adult , Humans , Cross-Sectional Studies , Brain/metabolism , Neuroimaging , White Matter/pathology
9.
Mol Genet Metab ; 140(3): 107666, 2023 11.
Article in English | MEDLINE | ID: mdl-37549444

ABSTRACT

BACKGROUND AND OBJECTIVE: Neonatal screening and early treatment have changed the natural history of PKU, preventing severe neurological and intellectual disability. Nevertheless, the outcome of the disease in early-treated adult patients (ETPKU) is less than optimal, the predictive value of metabolic biomarkers is feeble, and the recommended levels of blood phenylalanine (Phe) for adulthood are controversial. A crucial question whose answer will improve our understanding and treatment of PKU is whether cognitive outcomes can be modulated by levels of Phe even in early-treated adults. To address this question, we carried out an interventional study in seven ETPKU women planning a pregnancy. METHODS: They underwent an extensive neurocognitive assessment at baseline, and 3 and 6 months after having attained the blood Phe concentration recommended to prevent PKU fetopathy, but before pregnancy. RESULTS: After 3 and 6 months with a stable blood Phe level of about 240 µmol/L, all participants experienced significant improvements in almost all neurocognitive domains and tasks. IQ also increased of 11 to 21 points from the last assessment before enrolment. This pattern remained strong and consistent after correction for multiple comparisons. CONCLUSION: Our results indicate that a) strong cognitive improvement is possible even in adulthood and may be demonstrated by lowering Phe near normal levels; b) testing cognition under different metabolic conditions may unveil an individual vulnerability to Phe. These results pave the way for personalised treatment of the disease in adults with ETPKU.


Subject(s)
Phenylketonurias , Precision Medicine , Pregnancy , Infant, Newborn , Humans , Adult , Female , Phenylketonurias/therapy , Cognition , Neonatal Screening , Phenylalanine
10.
J Inherit Metab Dis ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402126

ABSTRACT

The autosomal recessive defect of aromatic L-amino acid decarboxylase (AADC) leads to a severe neurological disorder with manifestation in infancy due to a pronounced, combined deficiency of dopamine, serotonin and catecholamines. The success of conventional drug treatment is very limited, especially in patients with a severe phenotype. The development of an intracerebral AAV2-based gene delivery targeting the putamen or substantia nigra started more than 10 years ago. Recently, the putaminally-delivered construct, Eladocagene exuparvovec has been approved by the European Medicines Agency and by the British Medicines and Healthcare products Regulatory Agency. This now available gene therapy provides for the first time also for AADC deficiency (AADCD) a causal therapy, leading this disorder into a new therapeutic era. By using a standardized Delphi approach members of the International Working Group on Neurotransmitter related Disorders (iNTD) developed structural requirements and recommendations for the preparation, management and follow-up of AADC deficiency patients who undergo gene therapy. This statement underlines the necessity of a framework for a quality-assured application of AADCD gene therapy including Eladocagene exuparvovec. Treatment requires prehospital, inpatient and posthospital care by a multidisciplinary team in a specialized and qualified therapy center. Due to lack of data on long-term outcomes and the comparative efficacy of alternative stereotactic procedures and brain target sites, a structured follow-up plan and systematic documentation of outcomes in a suitable, industry-independent registry study are necessary.

11.
J Inherit Metab Dis ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37452721

ABSTRACT

Elevated serum prolactin concentrations occur in inherited disorders of biogenic amine metabolism because dopamine deficiency leads to insufficient inhibition of prolactin secretion. This work from the International Working Group on Neurotransmitter Related Disorders (iNTD) presents the results of the first standardized study on levodopa-refractory hyperprolactinemia (LRHP; >1000 mU/L) and pituitary magnetic resonance imaging (MRI) abnormalities in patients with inherited disorders of biogenic amine metabolism. Twenty-six individuals had LRHP or abnormal pituitary findings on MRI. Tetrahydrobiopterin deficiencies were the most common diagnoses (n = 22). The median age at diagnosis of LRHP was 16 years (range: 2.5-30, 1st-3rd quartiles: 12.25-17 years). Twelve individuals (nine females) had symptoms attributed to hyperprolactinemia: menstruation-related abnormalities (n = 7), pubertal delay or arrest (n = 5), galactorrhea (n = 3), and decreased sexual functions (n = 2). MRI of the pituitary gland was obtained in 21 individuals; six had heterogeneity/hyperplasia of the gland, five had adenoma, and 10 had normal findings. Eleven individuals were treated with the dopamine agonist cabergoline, ameliorating the hyperprolactinemia-related symptoms in all those assessed. Routine monitoring of these symptoms together with prolactin concentrations, especially after the first decade of life, should be taken into consideration during follow-up evaluations. The potential of slow-release levodopa formulations and low-dose dopamine agonists as part of first-line therapy in the prevention and treatment of hyperprolactinemia should be investigated further in animal studies and human trials. This work adds hyperprolactinemia-related findings to the current knowledge of the phenotypic spectrum of inherited disorders of biogenic amine metabolism.

12.
Brain ; 145(1): 208-223, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34382076

ABSTRACT

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Subject(s)
Alkyl and Aryl Transferases , Myoclonus , Neurodegenerative Diseases , Retinitis Pigmentosa , Child , Dolichols/metabolism , Humans , Neurodegenerative Diseases/genetics , Retinitis Pigmentosa/genetics
13.
J Med Genet ; 59(9): 888-894, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34675124

ABSTRACT

BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.


Subject(s)
Abnormalities, Multiple , Cerebellar Ataxia , Eye Abnormalities , Intellectual Disability , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Cerebellar Ataxia/genetics , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Eye Abnormalities/genetics , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Male , Phenotype , Repressor Proteins/genetics , Retina/abnormalities
14.
J Med Genet ; 59(4): 399-409, 2022 04.
Article in English | MEDLINE | ID: mdl-34085948

ABSTRACT

BACKGROUND: Pontocerebellar hypoplasias (PCH) comprise a group of genetically heterogeneous disorders characterised by concurrent hypoplasia of the pons and the cerebellum and variable clinical and imaging features. The current classification includes 13 subtypes, with ~20 known causative genes. Attempts have been made to delineate the phenotypic spectrum associated to specific PCH genes, yet clinical and neuroradiological features are not consistent across studies, making it difficult to define gene-specific outcomes. METHODS: We performed deep clinical and imaging phenotyping in 56 probands with a neuroradiological diagnosis of PCH, who underwent NGS-based panel sequencing of PCH genes and MLPA for CASK rearrangements. Next, we conducted a phenotype-based unsupervised hierarchical cluster analysis to investigate associations between genes and specific phenotypic clusters. RESULTS: A genetic diagnosis was obtained in 43 probands (77%). The most common causative gene was CASK, which accounted for nearly half cases (45%) and was mutated in females and occasionally in males. The European founder mutation p.Ala307Ser in TSEN54 and pathogenic variants in EXOSC3 accounted for 18% and 9% of cases, respectively. VLDLR, TOE1 and RARS2 were mutated in single patients. We were able to confirm only few previously reported associations, including jitteriness and clonus with TSEN54 and lower motor neuron signs with EXOSC3. When considering multiple features simultaneously, a clear association with a phenotypic cluster only emerged for EXOSC3. CONCLUSION: CASK represents the major PCH causative gene in Italy. Phenotypic variability associated with the most common genetic causes of PCH is wider than previously thought, with marked overlap between CASK and TSEN54-associated disorders.


Subject(s)
Cerebellar Diseases , Olivopontocerebellar Atrophies , Cerebellar Diseases/genetics , Cerebellum/diagnostic imaging , Cerebellum/pathology , Female , Humans , Male , Mutation/genetics , Nuclear Proteins/genetics , Olivopontocerebellar Atrophies/diagnosis , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/pathology , Phenotype
15.
Hum Mutat ; 43(1): 67-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34747546

ABSTRACT

Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.


Subject(s)
Nuclear Proteins , Seizures , Genetic Association Studies , Genotype , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Seizures/genetics
16.
Mol Genet Metab ; 135(1): 3-14, 2022 01.
Article in English | MEDLINE | ID: mdl-34996714

ABSTRACT

Inborn errors of metabolism causing stroke (ischemic or haemorrhagic) or stroke-like episodes (e.g., that are also called "metabolic strokes" and include acute brain lesions not related with alterations of blood flow) cover a wide range of diseases in which acute metabolic decompensations after trigger events (e.g., fever, dehydration, sepsis etc.) may have a variable frequency. The early diagnosis of these conditions is essential because, despite their rarity, effective symptomatic treatments may be available for acute settings (e.g., arginine for Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes- MELAS) while in other cases disease modifying therapies may be useful to prevent stroke occurrence, recurrence, or relapse (e.g., Fabry disease). The detection of a non-vascular distribution of lesions and the diffuse use of 1HMRS are often diriment in the differential of ischemic and metabolic strokes. This review summarized the main clinical features and the pathophysiological mechanisms of stroke and stroke-like episodes in inborn errors of metabolism presenting with stroke as part of natural history of the disease. These conditions belong to different etiological groups, such as organic acidurias, mitochondrial encephalopathies, homocystinuria and remethylation disorders, urea cycle disorders, lysosomal diseases (e.g. Fabry disease, glycogen storage disease), congenital disorders of glycosylation, neurotransmitter disorders, adenosine deaminase 2 deficiency and few other neurometabolic disorders.


Subject(s)
Fabry Disease , MELAS Syndrome , Mitochondrial Myopathies , Stroke , Urea Cycle Disorders, Inborn , Fabry Disease/complications , Humans , MELAS Syndrome/genetics , Stroke/etiology , Stroke/metabolism , Urea Cycle Disorders, Inborn/complications
17.
Mov Disord ; 37(11): 2197-2209, 2022 11.
Article in English | MEDLINE | ID: mdl-36054588

ABSTRACT

BACKGROUND AND OBJECTIVE: The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. METHODS: Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. RESULTS: One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. CONCLUSIONS: This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Chorea , Dystonia , Dystonic Disorders , Movement Disorders , Child , Humans , Hyperkinesis , Movement Disorders/genetics , Movement Disorders/diagnosis , Dystonic Disorders/genetics , Chorea/diagnosis , Chorea/genetics , Nerve Tissue Proteins , Forkhead Transcription Factors , Phosphoric Diester Hydrolases , Sodium-Potassium-Exchanging ATPase , GTP-Binding Protein alpha Subunits, Gi-Go/genetics
18.
Cerebellum ; 21(6): 1144-1150, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34846692

ABSTRACT

Joubert syndrome (JS) is a recessively inherited ciliopathy, characterized by a specific cerebellar and brainstem malformation recognizable on brain imaging as the "molar tooth sign" (MTS). Clinical signs include hypotonia, developmental delay, breathing abnormalities, and ocular motor apraxia. Older patients develop ataxia, intellectual impairment, and variable organ involvement. JS is genetically heterogeneous, with over 40 ciliary genes overall accounting for 65-75% cases. Thus, in recent years, the genetic diagnosis of JS has been based on the analysis of next-generation sequencing targeted gene panels. Since clinical features are unspecific and undistinguishable from other neurodevelopmental syndromes, the recognition of the MTS is crucial to address the patient to the appropriate genetic testing. However, the MTS is not always properly diagnosed, resulting either in false negative diagnoses (patients with the MTS not addressed to JS genetic testing) or in false positive diagnoses (patients with a different brain malformation wrongly addressed to JS genetic testing). Here, we present six cases referred for JS genetic testing based on inappropriate recognition of MTS. While the analysis of JS-related genes was negative, whole-exome sequencing (WES) disclosed pathogenic variants in other genes causative of distinct brain malformative conditions with partial clinical and neuroradiological overlap with JS. Reassessment of brain MRIs from five patients by a panel of expert pediatric neuroradiologists blinded to the genetic diagnosis excluded the MTS in all cases but one, which raised conflicting interpretations. This study highlights that the diagnostic yield of NGS-based targeted panels is strictly related to the accuracy of the diagnostic referral based on clinical and imaging assessment and that WES has an advantage over targeted panel analysis when the diagnostic suspicion is not straightforward.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Humans , Child , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/genetics , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Cerebellum/pathology , Retina/diagnostic imaging , Retina/pathology , Exome Sequencing , Diagnostic Errors
19.
Am J Med Genet A ; 188(2): 522-533, 2022 02.
Article in English | MEDLINE | ID: mdl-34713950

ABSTRACT

CHD2 encodes the chromodomain helicase DNA-binding protein 2, an ATP-dependent enzyme that acts as a chromatin remodeler. CHD2 pathogenic variants have been associated with various early onset phenotypes including developmental and epileptic encephalopathy, self-limiting or pharmacoresponsive epilepsies and neurodevelopmental disorders without epilepsy. We reviewed 84 previously reported patients carrying 76 different CHD2 pathogenic or likely pathogenic variants and describe 18 unreported patients carrying 12 novel pathogenic or likely pathogenic variants, two recurrent likely pathogenic variants (in two patients each), three previously reported pathogenic variants, one gross deletion. We also describe a novel phenotype of adult-onset pharmacoresistant epilepsy, associated with a novel CHD2 missense likely pathogenic variant, located in an interdomain region. A combined review of previously published and our own observations indicates that although most patients (72.5%) carry truncating CHD2 pathogenic variants, CHD2-related phenotypes encompass a wide spectrum of conditions with developmental delay/intellectual disability (ID), including prominent language impairment, attention deficit hyperactivity disorder and autistic spectrum disorder. Epilepsy is present in 92% of patients with a median age at seizure onset of 2 years and 6 months. Generalized epilepsy types are prevalent and account for 75.5% of all epilepsies, with photosensitivity being a common feature and adult-onset nonsyndromic epilepsy a rare presentation. No clear genotype-phenotype correlation has emerged.


Subject(s)
Epilepsy , Neurodevelopmental Disorders , DNA-Binding Proteins/genetics , Electroencephalography , Epilepsy/genetics , Humans , Mutation , Neurodevelopmental Disorders/genetics , Phenotype
20.
J Neural Transm (Vienna) ; 129(8): 1011-1021, 2022 08.
Article in English | MEDLINE | ID: mdl-35829818

ABSTRACT

No studies have investigated voluntary movement abnormalities and their neurophysiological correlates in patients with parkinsonism due to inherited primary monoamine neurotransmitter (NT) disorders. Nine NT disorders patients and 16 healthy controls (HCs) were enrolled. Objective measurements of repetitive finger tapping were obtained using a motion analysis system. Primary motor cortex (M1) excitability was assessed by recording the input/output (I/O) curve of motor-evoked potentials (MEP) and using a conditioning test paradigm for short-interval intracortical inhibition (SICI) assessment. M1 plasticity-like mechanisms were indexed according to MEPs amplitude changes after the paired associative stimulation protocol. Patient values were considered abnormal if they were greater or lower than two standard deviations from the average HCs value. Patients with aromatic amino acid decarboxylase, tyrosine hydroxylase, and 6-pyruvoyl-tetrahydropterin synthase defects showed markedly reduced velocity (5/5 patients), reduced movement amplitude, and irregular rhythm (4/5 patients). Conversely, only 1 out of 3 patients with autosomal-dominant GTPCH deficiency showed abnormal movement parameters. Interestingly, none of the patients had a progressive reduction in movement amplitude or velocity during the tapping sequence (no sequence effect). Reduced SICI was the most prominent neurophysiological abnormality in patients (5/9 patients). Finally, the I/O curve slope correlated with movement velocity and rhythm in patients. We provided an objective assessment of finger tapping abnormalities in monoamine NT disorders. We also demonstrated M1 excitability changes possibly related to alterations in motor execution. Our results may contribute to a better understanding of the pathophysiology of juvenile parkinsonism due to dopamine deficiency.


Subject(s)
Motor Cortex , Parkinsonian Disorders , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Neural Inhibition , Neurotransmitter Agents , Transcranial Magnetic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL