Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 540
Filter
1.
Plant J ; 119(1): 540-556, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38662911

ABSTRACT

Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced ß-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Histones , Malus , Plant Proteins , Transcription Factors , Carotenoids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Malus/genetics , Malus/metabolism , Histones/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Acetylation , Plants, Genetically Modified
2.
Plant Physiol ; 195(3): 2053-2072, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38536032

ABSTRACT

Carotenoids are major pigments contributing to fruit coloration. We previously reported that the apple (Malus domestica Borkh.) mutant fruits of "Beni Shogun" and "Yanfu 3" show a marked difference in fruit coloration. However, the regulatory mechanism underlying this phenomenon remains unclear. In this study, we determined that carotenoid is the main factor influencing fruit flesh color. We identified an R1-type MYB transcription factor (TF), MdMYBS1, which was found to be highly associated with carotenoids and abscisic acid (ABA) contents of apple fruits. Overexpression of MdMYBS1 promoted, and silencing of MdMYBS1 repressed, ß-branch carotenoids synthesis and ABA accumulation. MdMYBS1 regulates carotenoid biosynthesis by directly activating the major carotenoid biosynthetic genes encoding phytoene synthase (MdPSY2-1) and lycopene ß-cyclase (MdLCYb). 9-cis-epoxycarotenoid dioxygenase 1 (MdNCED1) contributes to ABA biosynthesis, and MdMYBS1 enhances endogenous ABA accumulation by activating the MdNCED1 promoter. In addition, the basic leucine zipper domain TF ABSCISIC ACID-INSENSITIVE5 (MdABI5) was identified as an upstream activator of MdMYBS1, which promotes carotenoid and ABA accumulation. Furthermore, ABA promotes carotenoid biosynthesis and enhances MdMYBS1 and MdABI5 promoter activities. Our findings demonstrate that the MdABI5-MdMYBS1 cascade activated by ABA regulates carotenoid-derived fruit coloration and ABA accumulation in apple, providing avenues in breeding and planting for improvement of fruit coloration and quality.


Subject(s)
Abscisic Acid , Carotenoids , Fruit , Gene Expression Regulation, Plant , Malus , Plant Proteins , Transcription Factors , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Malus/genetics , Malus/metabolism , Malus/drug effects , Carotenoids/metabolism , Fruit/genetics , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Pigmentation/genetics , Pigmentation/drug effects
3.
J Med Genet ; 61(10): 966-972, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39122262

ABSTRACT

BACKGROUND: Several variants of sequestosome 1 (SQSTM1) were screened in patients with amyotrophic lateral sclerosis (ALS), while the pathogenicity and genotype-phenotype correlation remains unclear. METHODS: We screened variants of SQSTM1 gene in 2011 Chinese patients with ALS and performed a burden analysis focusing on the rare variants. Furthermore, we conducted a comprehensive analysis of patients with variants of SQSTM1 gene in patients with ALS from our cohort and published studies. RESULTS: In our cohort, we identified 32 patients with 25 different SQSTM1 variants with a mutant frequency of 1.6%. Notably, 26% (5/19) of the patients with ALS with SQSTM1 variant in our cohort had comorbid cognitive impairment and 43% (3/7) of them had behavioural variant frontotemporal dementia (FTD). Our meta-analysis found a total frequency of SQSTM1 variants in 7183 patients with ALS was 2.4%; burden analysis indicated that patients with ALS had enrichment of ultra-rare (minor allele frequency<0.01%) probably pathogenic variants in SQSTM1. Most variants were missense variants and distributed in various domains of p62 protein, some of which might be related to comorbidities of Paget's disease of bone and FTD. CONCLUSION: Our study established the largest cohort of patients with ALS with SQSTM1 variants, expanded the mutation spectrum and investigated the genotype-phenotype correlations of SQSTM1 variants.


Subject(s)
Amyotrophic Lateral Sclerosis , Genetic Association Studies , Sequestosome-1 Protein , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/epidemiology , Sequestosome-1 Protein/genetics , Female , Male , Middle Aged , Gene Frequency , Genetic Predisposition to Disease , Mutation , Aged , Adult , Phenotype , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Genotype
4.
J Med Genet ; 61(9): 839-846, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-38886047

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by progressive degeneration of motor neurons. Genetic factors have a substantial impact on ALS. Therefore, this study aimed to explore the correlation between genotype (SOD1, TARDBP, FUS, C9orf72) and phenotype in ALS. METHODS: Genetic analysis was performed on 2038 patients with ALS, among which 1696 patients with sporadic ALS (SALS) as controls for genotype-phenotype analysis, and 1602 SALS as controls for survival analysis. Logistic regression and Cox proportional hazards models were used for statistical analysis. RESULTS: A total of 172 patients with ALS with the gene mutations were included in the statistical analysis (SOD1, n=65; FUS, n=43; TARDBP, n=27; C9orf72, n=37). SOD1 mutations were more frequent in flail leg phenotype (OR 7.317, p=0.001) and less in bulbar phenotype (OR 0.222, p=0.038). C9orf72 expansions exhibited higher frequency in bulbar phenotype (OR 2.770, p=0.008). SOD1 and FUS mutations were significantly associated with earlier age of onset (HR 2.039, p<0.001; HR 1.762, p=0.001). The patients with SOD1 mutations, C9orf72 expansions and those carrying pathogenic FUS mutations had significantly increased death risk (HR 2.217, p<0.001; HR 1.694, p=0.008; HR 1.652, p=0.036). The increased risk of death in ALS with C9orf72 expansions was significant in females (HR 2.419, p=0.014) but not in males (HR 1.442, p=0.128). CONCLUSION: Our study revealed distinct motor phenotypic tendencies in patients with ALS with different genotypes, indicating variations in the vulnerability of motor neurons during the disease's progression. Furthermore, we made novel discoveries regarding survival of different gene mutations, warranting further investigation.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Genetic Association Studies , Mutation , Phenotype , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/pathology , Male , Female , C9orf72 Protein/genetics , Middle Aged , China/epidemiology , Superoxide Dismutase-1/genetics , Adult , Genetic Association Studies/methods , RNA-Binding Protein FUS/genetics , DNA-Binding Proteins/genetics , Aged , Genotype , Age of Onset , Genetic Predisposition to Disease , Proteins/genetics
5.
BMC Med ; 22(1): 298, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020335

ABSTRACT

BACKGROUND: Limited evidence demonstrated the potential relationship between dietary sugar intake and dementia. This association demands further clarification in a large-scale population. METHODS: A total of 210,832 participants from the UK Biobank cohort were included in this prospective cohort study. Absolute and relative sugar intake and high-sugar dietary scores were utilized to reflect dietary sugar intake. Absolute sugar intake was identified by the Oxford WebQ in the UK Biobank. Relative sugar intake was calculated by dividing the absolute sugar intake by total diet energy. High-sugar dietary pattern was identified using the method of reduced rank regression. Cox proportional hazards regression analyses and restricted cubic splines were performed to examine the longitudinal associations between dietary sugar intake and all-cause dementia and its main subtype, Alzheimer's disease. Explorative mediation analyses were conducted to explore underlying mechanisms. RESULTS: Increased absolute sugar intake (g/day) was significantly associated with a higher risk of all-cause dementia (HR = 1.003, [95%CI: 1.002-1.004], p < 0.001) and Alzheimer's disease (1.002, [1.001-1.004], 0.005). Relative sugar intake (%g/kJ/day) also demonstrated significant associations with all-cause dementia (1.317, [1.173-1.480], p < 0.001) and Alzheimer's disease (1.249, [1.041-1.500], 0.017), while the high-sugar dietary score was only significantly associated with a higher risk of all-cause dementia (1.090, [1.045-1.136], p < 0.001). In addition, both sugar intake and high-sugar dietary score demonstrated significant non-linear relationships with all-cause dementia and Alzheimer's disease (all p values for non-linearity < 0.05). CONCLUSIONS: Our study provided evidence that excessive sugar intake was associated with dementia. Controlling the excess consumption of dietary sugar may be of great public health implications for preventing dementia.


Subject(s)
Dementia , Dietary Sugars , Humans , Prospective Studies , Male , Female , Dementia/epidemiology , Dementia/etiology , Aged , Middle Aged , Dietary Sugars/adverse effects , Dietary Sugars/administration & dosage , United Kingdom/epidemiology , Diet/adverse effects , Alzheimer Disease/epidemiology , Risk Factors , Adult , Dietary Patterns
6.
J Synchrotron Radiat ; 31(Pt 4): 968-978, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38917022

ABSTRACT

The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.

7.
Ann Neurol ; 94(5): 933-941, 2023 11.
Article in English | MEDLINE | ID: mdl-37528491

ABSTRACT

OBJECTIVE: Age at onset (AAO) is an essential clinical feature associated with disease progression and mortality in amyotrophic lateral sclerosis (ALS). Identification of genetic variants and environmental risk factors influencing AAO of ALS could help better understand the disease's biological mechanism and provide clinical guidance. However, most genetic studies focused on the risk of ALS, while the genetic background of AAO is less explored. This study aimed to identify genetic and environmental determinants for AAO of ALS. METHODS: We performed a genome-wide association analysis using a Cox proportional hazards model on AAO of ALS in 10,068 patients. We further conducted colocalization analysis and in-vitro functional exploration for the target variants, as well as Mendelian randomization analysis to identify risk factors influencing AAO of ALS. RESULTS: The total heritability of AAO of ALS was ~0.16 (standard error [SE] = 0.03). One novel locus rs2046243 (CTIF) was significantly associated with earlier AAO by ~1.29 years (p = 1.68E-08, beta = 0.10, SE = 0.02). Functional exploration suggested this variant was associated with increased expression of CTIF in multiple tissues including the brain. Colocalization analysis detected a colocalization signal at the locus between AAO of ALS and expression of CTIF. Causal inference indicated higher education level was associated with later AAO. INTERPRETATION: These findings improve the current knowledge of the genetic and environmental etiology of AAO of ALS, and provide a novel target CTIF for further research on ALS pathogenesis and potential therapeutic options to delay the disease onset. ANN NEUROL 2023;94:933-941.


Subject(s)
Amyotrophic Lateral Sclerosis , Genome-Wide Association Study , Humans , Age of Onset , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
8.
Hum Genomics ; 17(1): 28, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966328

ABSTRACT

BACKGROUND: Recently, several rare variants of SPTLC1 were identified as disease cause for juvenile amyotrophic lateral sclerosis (ALS) by disrupting the normal homeostatic regulation of serine palmitoyltransferase (SPT). However, further exploration of the rare variants in large cohorts was still necessary. Meanwhile, SPTLC2 plays a similar role as SPTLC1 in the SPT function. METHODS: To explore the genetic role of SPTLC1 and SPTLC2 in ALS, we analyzed the rare protein-coding variants in 2011 patients with ALS and 3298 controls from the Chinese population with whole exome sequencing. Fisher's exact test was performed between each variant and disease risk, while at gene level over-representation of rare variants in patients was examined with optimized sequence kernel association test (SKAT-O). RESULTS: Totally 33 rare variants with minor allele frequency < 0.01 were identified, including 17 in SPTLC1 and 16 in SPTLC2. One adult-onset patient carried the variant p.E406K (SPTLC1) which was reported in previous study. Additionally, three adult-onset patients carried variants in the same amino acids as the variants identified in previous studies (p.Y509C, p.S331T, and p.R239Q in SPTLC1). At gene level, rare variants of SPTLC1 and STPLC2 were not enriched in patients. CONCLUSION: These results broadened the variant spectrum of SPTLC1 and SPTLC2 in ALS, and paved the way for future research. Further replication was still needed to explore the genetic role of SPTLC1 in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Adult , Humans , Amyotrophic Lateral Sclerosis/genetics , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Gene Frequency
9.
Brain Behav Immun ; 117: 447-455, 2024 03.
Article in English | MEDLINE | ID: mdl-38336023

ABSTRACT

BACKGROUND: Multiple evidence has suggested the complex interplay between Parkinson's disease (PD) and systemic inflammation marked by C-reactive protein (CRP) and interleukin 6 (IL-6). Nevertheless, the findings across studies have shown inconsistency, and the direction of the effect remains controversial. Here, we aimed to explore the link between CRP and IL-6 and the risk of PD. METHODS: Based on data from the UK Biobank, we investigated the association between baseline CRP and IL-6 and the risk of incident PD with Cox proportional hazards regression analysis. We further performed extensive genetic analyses including genetic correlation, polygenic risk score (PRS), and pleiotropic enrichment based on summary statistics from previous genome-wide association studies. RESULTS: A higher level of CRP at baseline was associated with a lower risk of PD (HR = 0.85, 95 % CI: 0.79-0.90, P = 4.23E-07). The results remained consistent in the subgroup analyses stratified by sex, age and body mass index. From the genetic perspective, a significant negative genetic correlation was identified between CRP and PD risk (correlation: -0.14, P = 6.31E-05). Higher PRS of CRP was associated with a lower risk of PD (P = 0.015, beta = -0.04, SE = 0.017). Moreover, we observed significant pleiotropic enrichment for PD conditional on CRP, and identified 13 risk loci for PD, some of which are implicated in immune functionality and have been linked to PD, including CTSB, HNF4A, PPM1G, ACMSD, and NCOR1. In contrast, no significant association was identified between IL-6 and PD. CONCLUSIONS: Systemic inflammation at baseline measured by CRP level is associated with decreased future risk of PD. These discoveries contribute to a deeper comprehension of the role of inflammation in the risk of PD, and hold implications for the design of therapeutic interventions in clinical trials.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Interleukin-6/genetics , Parkinson Disease/genetics , Prospective Studies , Inflammation/genetics , C-Reactive Protein , Genetic Risk Score , Protein Phosphatase 2C
10.
Mol Pharm ; 21(5): 2148-2162, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38536949

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer for which effective therapies are lacking. Targeted remodeling of the immunosuppressive tumor microenvironment (TME) and activation of the body's immune system to fight tumors with well-designed nanoparticles have emerged as pivotal breakthroughs in tumor treatment. To simultaneously remodel the immunosuppressive TME and trigger immune responses, we designed two potential therapeutic nanodelivery systems to inhibit TNBC. First, the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 and the cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) were coloaded into chondroitin sulfate (CS) to obtain CS@JQ1/CXB nanoparticles (NPs). Then, the biomimetic nanosystem MM@P3 was prepared by coating branched polymer poly(ß-amino ester) self-assembled NPs with melittin embedded macrophage membranes (MM). Both in vitro and in vivo, the CS@JQ1/CXB and MM@P3 NPs showed excellent immune activation efficiencies. Combination treatment exhibited synergistic cytotoxicity, antimigration ability, and apoptosis-inducing and immune activation effects on TNBC cells and effectively suppressed tumor growth and metastasis in TNBC tumor-bearing mice by activating the tumor immune response and inhibiting angiogenesis. In summary, this study offers a novel combinatorial immunotherapeutic strategy for the clinical TNBC treatment.


Subject(s)
Azepines , Celecoxib , Triazoles , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Animals , Female , Mice , Humans , Celecoxib/administration & dosage , Cell Line, Tumor , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Melitten/administration & dosage , Melitten/chemistry , Apoptosis/drug effects , Nanoparticle Drug Delivery System/chemistry , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Polymers/chemistry , Mice, Nude , Drug Delivery Systems/methods
11.
Analyst ; 149(16): 4283-4294, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38984809

ABSTRACT

In this work, Au/Bi2O3 was synthesized by loading Au nanoparticles (NPs) onto ß-Bi2O3 by a simple solution reduction method. ß-Bi2O3 was synthesized by a precipitation-thermal decomposition procedure, which results in significantly improved SERS detection limits down to 10-9 M for methylene blue (MB) and 10-7 M for methyl orange (MO) as probe molecules, comparable to those reported for the best semiconductor SERS substrates. In particular, further deposition of Au NPs (5.20% wt%) onto ß-Bi2O3 results in a two-order-of-magnitude enhancement in detection sensitivity, achieving a detection limit of 10-11 M for MB and 10-9 M for MO. Under ultraviolet/visible irradiation, the Au/Bi2O3 hybrids substrate exhibits superior self-cleaning ability due to its photocatalytic degradation ability which can be applied repeatedly to the detection of pollutants. The advanced composite substrate simultaneously achieved ultra-low mass loading of Au NPs, outstanding detection performance, good reproducibility, high stability and self-cleaning ability. The development strategy of low load noble metal coupled high performance semiconductor ß-Bi2O3 to obtain nano-hybrid materials provides a method to balance SERS sensitivity, cost effectiveness and operational stability, and can be synthesized in large quantities, which is a key step towards commercialization and has good reliability prospects.

12.
Exp Cell Res ; 432(2): 113793, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37741490

ABSTRACT

Angelicin has been reported to have antitumor effects on many types of cancer. However, few studies on angelicin in oral squamous cell carcinoma (OSCC) have been performed. We performed cell cycle and apoptosis analyses to assess the effect of angelicin on OSCC cells. We conducted RNA-seq studies to reveal differentially expressed genes (DEGs). Dual-specificity phosphatase 6 (DUSP6) and c-MYC were strongly down-regulated differential genes. Silencing RNA (siRNA) was used to knockdown DUSP6. The mouse xenograft model was used to mimic OSCC. Angelicin inhibited OSCC in vitro. We found that DUSP6 interacted with c-MYC. DUSP6 knockdown group and DUSP6 knockdown + angelicin group had similar effects of OSCC cells. Angelicin could reduce tumor formation, DUSP6, and c-MYC expression in vivo. Compared with paclitaxel, the tumor inhibition effect of the two drugs was similar. However, angelicin did not cause weight loss and had lower toxicity. In sum, Angelicin has antitumor effects on OSCC in vitro and vivo by negatively regulating the DUSP6 mediated c-MYC signaling pathway.

13.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965953

ABSTRACT

BACKGROUND: We aimed to characterize the relationship between the serum 25-hydroxyvitamin D concentration and the circulating lipid concentrations of patients with NAFLD in the Hulunbuir region of China. METHODS: One hundred fifty-six patients, who were diagnosed with NAFLD in the Physical Examination Department of the Second Clinical College of Inner Mongolia University for the Nationalities between January 2021 and March 2023, were recruited as NAFLD group, and 160 healthy people were recruited as a control group during the same period. The serum 25(OH)VitD, TBIL, TG, TC, LDL-C, HDL-C, AST, ALT, GGT, and FPG activities of the participants were measured, and hepatic ultrasonography was performed. RESULTS: The BMI of the NAFLD group was higher than of the control group (p < 0.05). The serum 25(OH)VitD3 (p < 0.05) and the HDL-C concentrations of the NAFLD group were lower than those of the normal control group. However, the AST (p < 0.05), ALT (p < 0.05), and GGT (p < 0.05) activities, and the serum TG (p < 0.05), TC (p < 0.05), LDL-C (p < 0.05), and the fasting glucose (p < 0.05) concentrations of the NAFLD group were higher than those of the normal control group. The serum 25(OH)VitD3 concentrations of the NAFLD group significantly cor-related negatively with BMI (r = -0.302, p < 0.01), TG (r = -0.221, p < 0.05), and fasting glucose (r = -0.236, p < 0.05). The BMI, TG, and fasting glucose of vitamin D-deficient participants were higher than of the participants with adequate or insufficient levels of vitamin D (p < 0.05). Finally, the BMI of vitamin D-deficient participants was higher than of those with an adequate vitamin D status (p < 0.05). CONCLUSIONS: A deficiency of 25(OH)VitD is more common in people from the Hulunbuir region of China than elsewhere. In addition, the vitamin D status is significantly associated with NAFLD; as the serum vitamin D concentration decreases, patients with NAFLD show greater dyslipidemia and hyperglycemia and a higher BMI.


Subject(s)
Lipids , Non-alcoholic Fatty Liver Disease , Vitamin D , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Female , Vitamin D/blood , Vitamin D/analogs & derivatives , Male , China/epidemiology , Adult , Lipids/blood , Middle Aged , Case-Control Studies , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/diagnosis , Body Mass Index
14.
Biomed Chromatogr ; 38(8): e5929, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881323

ABSTRACT

The Runchang-Tongbian (RCTB) formula is a traditional Chinese medicine (TCM) formula consisting of four herbs, namely Cannabis Fructus (Huomaren), Rehmanniae Radix (Dihuang), Atractylodis Macrocephalae Rhizoma (Baizhu), and Aurantii Fructus (Zhiqiao). It is widely used clinically because of its beneficial effect on constipation. However, its strong bitter taste leads to poor patient compliance. The bitter components of TCM compounds are complex and numerous, and inhibiting the bitter taste of TCM has become a major clinical challenge. Here, we use ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) and high-resolution mass spectrometry to identify 59 chemical components in the TCM compound RCTB formula. Next, four bitter taste receptors, TAS2R39, TAS2R14, TAS2R7, and TAS2R5, which are tightly bound to the compounds in RCTB, were screened as molecular docking receptors using the BitterX database. The top-three-scoring receptor-small-molecule complexes for each of the four receptors were selected for molecular dynamics simulation. Finally, seven bitter components were identified, namely six flavonoids (rhoifolin, naringin, poncirin, diosmin, didymin, and narirutin) and one phenylpropanoid (purpureaside C). Thus, we proposed a new method for identifying the bitter components in TCM compounds, which provides a theoretical reference for bitter taste inhibition in TCM compounds.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Molecular Docking Simulation , Molecular Dynamics Simulation , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Humans , Taste , Liquid Chromatography-Mass Spectrometry
15.
Alzheimers Dement ; 20(6): 4066-4079, 2024 06.
Article in English | MEDLINE | ID: mdl-38713803

ABSTRACT

INTRODUCTION: The impact of early-life tobacco exposure on dementia has remained unknown. METHODS: Using the UK Biobank, the associations of maternal smoking during pregnancy (MSDP) and age of smoking initiation (ASI) with the onset time of all-cause dementia were estimated with accelerated failure time models. The effects of MSDP and ASI on brain structure and their genetic correlation to Alzheimer's disease (AD) were analyzed. A Mendelian randomization (MR) analysis was conducted. RESULTS: The time ratios for smokers starting in childhood, adolescence, and adulthood (vs never smokers) were 0.87 (0.76 to 0.99), 0.92 (0.88 to 0.96), and 0.95 (0.89 to 1.01). MSDP and smoking in adolescence altered many brain regions, including the hippocampus. In genetic analysis, MSDP was genetically and causally linked to AD, and a younger ASI was genetically correlated to a higher AD risk. DISCUSSION: Early-life smoking accelerated dementia onset and was genetically correlated to AD. MSDP demonstrated genetic and causal linkage to AD risks. HIGHLIGHTS: Unlike the commonly used Cox proportional hazards model, this article uses a parametric survival analysis method - the accelerated failure model - to explore the relationship between exposure to onset time. It can be used as an alternative method when the proportional hazards assumption is not met. Genetic analyses including genetic correlation study and MR analysis and brain structure analyses were conducted to support our findings and explore the potential mechanisms. The study reveals the relationship between different smoking initiation periods and the onset time of dementia and shows that earlier smoking exposure has a more significant impact on dementia. It emphasizes the importance of preventing early smoking. In the future, more research focusing on the relationship between early exposure and dementia is called for to provide more detailed prevention measures for dementia that cover all age groups.


Subject(s)
Dementia , Prenatal Exposure Delayed Effects , Smoking , Humans , Female , Pregnancy , Dementia/epidemiology , Prospective Studies , Smoking/epidemiology , Male , United Kingdom/epidemiology , Mendelian Randomization Analysis , Middle Aged , Aged , Incidence , Adult , Risk Factors , Age of Onset
16.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542394

ABSTRACT

Modern plant breeding relies heavily on the deployment of susceptibility and resistance genes to defend crops against diseases. The expression of these genes is usually regulated by transcription factors including members of the AP2/ERF family. While these factors are a vital component of the plant immune response, little is known of their specific roles in defense against Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) in banana plants. In this study, we discovered that MaERF12, a pathogen-induced ERF in bananas, acts as a resistance gene against Foc TR4. The yeast two-hybrid assays and protein-protein docking analyses verified the interaction between this gene and MaSMG7, which plays a role in nonsense-mediated RNA decay. The transient expression of MaERF12 in Nicotiana benthamiana was found to induce strong cell death, which could be inhibited by MaSMG7 during co-expression. Furthermore, the immunoblot analyses have revealed the potential degradation of MaERF12 by MaSMG7 through the 26S proteasome pathway. These findings demonstrate that MaSMG7 acts as a susceptibility factor and interferes with MaERF12 to facilitate Foc TR4 infection in banana plants. Our study provides novel insights into the biological functions of the MaERF12 as a resistance gene and MaSMG7 as a susceptibility gene in banana plants. Furthermore, the first discovery of interactions between MaERF12 and MaSMG7 could facilitate future research on disease resistance or susceptibility genes for the genetic improvement of bananas.


Subject(s)
Fusarium , Musa , Gene Expression Profiling , Musa/genetics , Plant Diseases/genetics , Plant Roots/genetics , Plant Breeding , Fusarium/genetics
17.
Int Heart J ; 65(2): 300-307, 2024.
Article in English | MEDLINE | ID: mdl-38556338

ABSTRACT

Angiogenesis is crucial for blood supply reconstitution after myocardial infarction in patients with acute coronary syndrome (ACS). MicroRNAs are recognized as important epigenetic regulators of endothelial angiogenesis. The purpose of this study is to determine the roles of miR-522-3p in angiogenesis after myocardial infarction. The expression levels of miR-522-3p in rats' plasma and in the upper part of the ligation of the heart tissues at 28 days after myocardial infarction were significantly higher than those of the sham group. miR-522-3p mimics inhibited cell proliferations, migrations, and tube formations under hypoxic conditions in HUVECs (human umbilical vein endothelial cells), whereas miR-522-3p inhibitors did the opposite. Furthermore, studies have indicated that the inhibition of miR-522-3p by antagomir infusion promoted angiogenesis and accelerated the recovery of cardiac functions in rats with myocardial infarction.Data analysis and experimental results revealed that FOXP1 (Forkhead-box protein P1) was the target gene of miR-522-3p. Our study explored the mechanism of cardiac angiogenesis after myocardial infarction and provided a potential therapeutic approach for the treatment of ischemic heart disease in the future.


Subject(s)
MicroRNAs , Myocardial Infarction , Animals , Humans , Rats , Angiogenesis , Forkhead Transcription Factors/genetics , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Neovascularization, Physiologic/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors
18.
Zhongguo Zhong Yao Za Zhi ; 49(2): 443-452, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403320

ABSTRACT

Chinese patent medicine preparations containing Epimedii Folium and Psoraleae Fructus have been associated with the occurrence of idiosyncratic drug-induced liver injury(IDILI). However, the specific toxic biomarkers and mechanisms underlying these effects remain unclear. This study aimed to comprehensively assess the impact of bavachin and epimedin B, two principal consti-tuents found in Psoraleae Fructus and Epimedii Folium, on an IDILI model induced by tumor necrosis factor-α(TNF-α) treatment, both in vitro and in vivo. To evaluate the extent of liver injury, various parameters were assessed. Lactate dehydrogenase(LDH) release in the cell culture supernatant, as well as the levels of alanine aminotransferase(ALT) and aspartate transaminase(AST) in mouse plasma were measured. Additionally, histological analysis employing hematoxylin-eosin staining was performed to observe liver tissue changes indicative of the severity of liver injury. Furthermore, a pseudo-targeted metabolomics approach was employed, followed by multivariate analysis, to identify differential metabolites. These identified metabolites were subsequently subjected to Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. The results showed that at the cellular level, after 2 hours of TNF-α stimulation, bavachin significantly increased the release of LDH in HepG2 cells compared to the normal group and the group treated alone; after the combination of bavachin and epimedin B, the release of LDH further significantly increased on the original basis. Similarly, although the individual or combination treatments of bavachin and epimedin B did not induce liver injury in normal mice, the combination of both drugs induced marked liver injury in TNF-α treated mice, leading to a significant elevation in plasma AST and ALT levels and substantial infiltration of inflammatory immune cells in the liver tissue. Pseudo-targeted metabolomics analysis identified seven common differential metabolites. Among these, D-glucosamine-6-phosphate, N1-methyl-2-pyridone-5-carboxamide, 17beta-nitro-5a-androstane, irisolidone-7-O-glucuronide, and N-(1-deoxy-1-fructosyl) valine emerged as potential biomarkers, with an area under the curve(AUC) exceeding 0.9. Furthermore, our results suggest that the metabolism of nicotinic acid and nicotinamide, as well as the linoleic acid metabolic pathway, may play pivotal roles in bavachin and epimedin B-induced IDILI. In conclusion, within an immune-stressed environment mediated by TNF-α, bavachin and epimedin B appear to induce IDILI through disruptions in metabolic processes.


Subject(s)
Chemical and Drug Induced Liver Injury , Flavonoids , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Liver , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology
19.
Lancet Oncol ; 24(11): 1229-1241, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37863088

ABSTRACT

BACKGROUND: Relapses frequently occur following CD19-directed chimeric antigen receptor (CAR) T-cell treatment for relapsed or refractory B-cell acute lymphocytic leukaemia in children. We aimed to assess the activity and safety of sequential CD19-directed and CD22-directed CAR T-cell treatments. METHODS: This single-centre, single-arm, phase 2 trial, done at Beijing GoBroad Boren Hospital, Beijing, China, included patients aged 1-18 years who had relapsed or refractory B-cell acute lymphocytic leukaemia with CD19 and CD22 positivity greater than 95% and an Eastern Cooperative Oncology Group performance status of 0-2. Patients were initially infused with CD19-directed CAR T cells intravenously, followed by CD22-directed CAR T-cell infusion after minimal residual disease-negative complete remission (or complete remission with incomplete haematological recovery) was reached and all adverse events (except haematological adverse events) were grade 2 or better. The target dose for each infusion was 0·5 × 106 to 5·0 × 106 cells per kg. The primary endpoint was objective response rate at 3 months after the first infusion. Secondary endpoints were duration of remission, event-free survival, disease-free survival, overall survival, safety, pharmacokinetics, and B-cell quantification. The prespecified activity analysis included patients who received the target dose and the safety analysis included all treated patients. This study is registered with ClinicalTrials.gov, NCT04340154, and enrolment has ended. FINDINGS: Between May 28, 2020, and Aug 16, 2022, 81 participants were enrolled, of whom 31 (38%) were female and 50 (62%) were male. Median age was 8 years (IQR 6-10), all patients were Asian. All 81 patients received the first infusion and 79 (98%) patients received sequential infusions, CD19-directed CAR T cells at a median dose of 2·7 × 106 per kg (IQR 1·1 × 106 to 3·7 × 106) and CD22-directed CAR T cells at a median dose of 2·2 × 106 per kg (1·1 × 106 to 3·7 × 106), with a median interval of 39 days (37-41) between the two infusions. 62 (77%) patients received the target dose, including two patients who did not receive CD22 CAR T cells. At 3 months, 60 (97%, 95% CI 89-100) of the 62 patients who received the target dose had an objective response. Median follow-up was 17·7 months (IQR 11·4-20·9). 18-month event-free survival for patients who received the target dose was 79% (95% CI 66-91), duration of remission was 80% (68-92), and disease-free survival was 80% (68-92) with transplantation censoring; overall survival was 96% (91-100). Common adverse events of grade 3 or 4 between CD19-directed CAR T-cell infusion and 30 days after CD22-directed CAR T-cell infusion included cytopenias (64 [79%] of 81 patients), cytokine release syndrome (15 [19%]), neurotoxicity (four [5%]), and infections (five [6%]). Non-haematological adverse events of grade 3 or worse more than 30 days after CD22-directed CAR T-cell infusion occurred in six (8%) of 79 patients. No treatment-related deaths occurred. CAR T-cell expansion was observed in all patients, with a median peak at 9 days (IQR 7-14) after CD19-directed and 12 days (10-15) after CD22-directed CAR T-cell infusion. At data cutoff, 35 (45%) of 77 evaluable patients had CAR transgenes and 59 (77%) had B-cell aplasia. INTERPRETATION: This sequential strategy induced deep and sustained responses with an acceptable toxicity profile, and thus potentially provides long-term benefits for children with this condition. FUNDING: The National Key Research & Development Program of China, the CAMS Innovation Fund for Medical Sciences (CIFMS), and the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Male , Child , Female , Receptors, Chimeric Antigen/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Immunotherapy, Adoptive/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Cell- and Tissue-Based Therapy , Sialic Acid Binding Ig-like Lectin 2/therapeutic use
20.
Anal Chem ; 95(16): 6672-6680, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37053544

ABSTRACT

Droplet microfluidics provides powerful tools for biochemical applications. However, precise fluid control is usually required in the process of droplet generation and detection, which hinders droplet-based applications in point-of-care testing (POCT). Here, we present a droplet reinjection method capable of droplet distribution without precise fluid control and external pumps by which the droplets can be passively aligned and detected one by one at intervals. By further integrating the surface-wetting-based droplet generation chip, an integrated POrtable Droplet system (iPODs) is developed. The iPODs integrates multiple functions such as droplet generation, online reaction, and serial reading. Using the iPODs, monodisperse droplets can be generated at a flow rate of 800 Hz with a narrow size distribution (CV <2.2%). Droplets are kept stable, and the fluorescence signal can be significantly identified after the reaction. The spaced droplet efficiency in the reinjection chip is nearly 100%. In addition, we validate digital loop-mediated isothermal amplification (dLAMP) within 80 min with a simple operation workflow. The results show that iPODs has good linearity (R2 = 0.999) at concentrations ranging from 101 to 104 copies/µL. Thus, the developed iPODs highlights its potential to be a portable, low-cost, and easy-to-deploy toolbox for droplet-based applications.

SELECTION OF CITATIONS
SEARCH DETAIL