Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 106(11): 4199-4209, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35599257

ABSTRACT

Carbonyl compounds represented by aldehydes and ketones make an important contribution to the flavor of tobacco. Since most carbonyl compounds are produced by microbes during tobacco fermentation, identifying their producers is important to improve the quality of tobacco. Here, we created an efficient workflow that combines metabolite labeling with fluorescence-activated cell sorting (ML-FACS), 16S rRNA gene sequencing, and microbial culture to identify the microbes that produce aldehydes or ketones in fermented cigar tobacco leaves (FCTL). Microbes were labeled with a specific fluorescent dye (cyanine5 hydrazide) and separated by flow cytometry. Subsequently, the sorted microbes were identified and cultured under laboratory conditions. Four genera, Acinetobacter, Sphingomonas, Solibacillus, and Lysinibacillus, were identified as the main carbonyl compound-producing microbes in FCTL. In addition, these microorganisms could produce flavor-related aldehydes and ketones in a simple synthetic medium, such as benzaldehyde, phenylacetaldehyde, 4-hydroxy-3-ethoxy-benzaldehyde, and 3,5,5-trimethyl-2-cyclohexene-1-one. On the whole, this research has developed a new method to quickly isolate and identify microorganisms that produce aldehydes or ketones from complex microbial communities. ML-FACS would also be used to identify other compound-producing microorganisms in other systems. KEY POINTS: • An approach was developed to identify target microbes in complex communities. • Microbes that produce aldehyde/ketone flavor compounds in fermented cigar tobacco leaves were identified. • Functional microbes that produce aldehyde/ketone flavor compounds from the native environment were captured in pure cultures.


Subject(s)
Nicotiana , Tobacco Products , Aldehydes , Benzaldehydes , Fermentation , Ketones , Plant Leaves , RNA, Ribosomal, 16S/genetics , Nicotiana/genetics , Workflow
2.
Heliyon ; 10(4): e26630, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434019

ABSTRACT

Cigars have unique aroma and style characteristics. In order to clarify the differences of aroma components between domestic and imported cigars and the material basis of the stylistic characteristics of different cigars, gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were used to compare and analyze the aroma components in the mainstream smoke of four domestic cigars and two imported cigars. The GC-MS results showed that a total of 97 aroma components were measured in the smoke of the six cigars, and the types of aroma components were similar, but there were differences in their contents. In comparison with those of domestic cigars, imported cigars had suitable nicotine content, and higher contents of phytol, neophytadiene, 3-methylpentanoic acid, and (+)-δ-cadinene. To further explore the differences in the aroma components of the six cigars, GC-MS data combined with chemometrics were used to screen out 14 key aroma components based on P-value (P) < 0.05, Variable Importance Projection (VIP) > 1, and Aroma Activity Values (OAV) > 1. The key aroma components of each cigar were obtained, Snow Dream No. 5: cedrol; Wangguan Guocui: 6-methyl-5-hepten-2-one, pyridine, 2-ethyl-6-methylpyrazine; General Achileus No. 3: p-cresol, 2-methylbutyraldehyde, methyl cyclopentenolone; Montecristo No. 4: cedrol, 2-methylbutyraldehyde, guaiacol, 4-vinylguaiacol, methyl cyclopentenolone; Romeo y Julieta Wide Churchills: cedrol, 2,6-dimethylpyrazine, 2-ethyl-6-methylpyrazine, 2-heptanone, phenethyl alcohol; Great Wall No. 2: p-cresol, phenethyl alcohol, geranylacetone, methyl cyclopentenolone, dihydroactinidiolide. The odor descriptors of these compounds were consistent with the aroma profiles that were prominent in the senses of each cigar. This experiment initially explored the differences in aroma composition and style characteristics of cigars and provided data to support the quality improvement of domestic cigars.

3.
Front Microbiol ; 14: 1267916, 2023.
Article in English | MEDLINE | ID: mdl-37808308

ABSTRACT

Introduction: Adding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves. Methods: A novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process. Results: The sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community's richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, ß-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and ß-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas. Conclusion: This research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves.

4.
Front Microbiol ; 14: 1230547, 2023.
Article in English | MEDLINE | ID: mdl-37637128

ABSTRACT

The agricultural fermentation processing of cigar tobacco leaves (CTLs), including air-curing and agricultural fermentation, carried out by tobacco farmers has rarely been studied. In this study, we have investigated the microbial community in the CTLs during air-curing and agricultural fermentation by 16S rRNA and ITS gene high-throughput sequencing. The results showed that the richness of microbial communities gradually increased with the development of agricultural fermentation, which means that not all microorganisms in CTLs come from the fields where tobacco grows, but gradually accumulate into CTLs during the fermentation process. Enterobacteriaceae, Chloroplast, and Alternaria were the dominant genera in the air-cured CTLs. Aquabacterium, unclassified Burkholderiaceae, Caulobacter, Brevundimonas, and Aspergillus were the dominant genera in the agriculturally fermented CTLs. Acinetobacter, Methylobacterium, Sampaiozyma, and Plectosphaerella first significantly increased, and then significantly decreased during agricultural processing. The changes in microbial communities are mainly related to their different functions during fermentation. This means that when the fermentation effect of the original microbial community in cigar tobacco leaves is not ideal, we can optimize or design the microbial community based on the fermentation function that the microbial community needs to achieve. These results may help adjust and optimize the agricultural fermentation process of CTLs, and help develop the quality of CTLs and increase the income of tobacco farmers.

5.
Front Microbiol ; 13: 907270, 2022.
Article in English | MEDLINE | ID: mdl-35756070

ABSTRACT

Despite the booming international trade in cigar tobacco leaves (CTLs), the main characteristics of tobacco leaves from different producing areas are rarely reported. This study aimed to characterize the microbial community, volatile flavor compounds (VFCs), and flavor of CTLs from four famous cigar-producing areas, including Dominica, Brazil, Indonesia, and China. High-throughput sequencing results showed that the dominant genera in CTLs were Staphylococcus, Pseudomonas, Aspergillus, Sampaiozyma, and Alternaria. Sensory analysis revealed that Indonesian and Chinese CTLs were characterized by leathery, peppery, and baked aroma. Brazilian CTLs were dominated by caramel and herb aroma. Dominican CTLs had aromas of milk, fruity, sour, cream, flower, nutty, and honey. Supplemented with the determination of volatile flavor compounds (VFCs), the flavor of CTLs could be scientifically quantified. Most of these VFCs were aldehydes and ketones, and 20 VFCs showed significant differences in CTLs from different regions. The microbial community, VFCs, and flavor of CTLs vary widely due to geographic differences. Network analysis revealed the microbial community was closely related to most VFCs, but the relationships between the fungal community and VFCs were less than the bacterial community, and most of them were negative. Furthermore, it also found that the bacterial community had a greater contribution to the flavor of CTLs than the fungal community. This study obtained essential information on CTLs, which laid a foundation for deeply excavating the relationship between microbes and VFCs and flavor, and establishing a tobacco information database.

6.
Front Microbiol ; 13: 911791, 2022.
Article in English | MEDLINE | ID: mdl-35783443

ABSTRACT

Metabolic activity of the microbial community greatly affects the quality of cigar tobacco leaves (CTLs). To improve the quality of CTLs, two extrinsic microbes (Acinetobacter sp. 1H8 and Acinetobacter indicus 3B2) were inoculated into CTLs. The quality of CTLs were significantly improved after fermentation. The content of solanone, 6-methyl-5-hepten-2-one, benzeneacetic acid, ethyl ester, cyclohexanone, octanal, acetophenone, and 3,5,5-trimethyl-2-cyclohexen-1-one were significantly increased after inoculated Acinetobacter sp. 1H8. The inoculation of Acinetobacter sp. 1H8 enhanced the normal evolutionary trend of bacterial community. The content of trimethyl-pyrazine, 2,6-dimethyl-pyrazine, and megastigmatrienone were significantly increased after inoculated Acinetobacter indicus 3B2. The inoculation of Acinetobacter indicus 3B2 completely changed the original bacterial community. Network analysis revealed that Acinetobacter was negatively correlated with Aquabacterium, positively correlated with Bacillus, and had significant correlations with many volatile flavor compounds. This work may be helpful for improving fermentation product quality by regulating microbial community, and gain insight into the microbial ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL