Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Lipid Res ; 65(9): 100623, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154732

ABSTRACT

Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.


Subject(s)
Adipose Tissue, White , Mitochondria , Receptors, Atrial Natriuretic Factor , Animals , Adipose Tissue, White/metabolism , Mice , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Mitochondria/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Cell Respiration , Diet, High-Fat/adverse effects , Obesity/metabolism , Obesity/genetics
2.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37572787

ABSTRACT

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Kidney Diseases , Mice , Humans , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Aldosterone/adverse effects , Aldosterone/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Desoxycorticosterone Acetate/adverse effects , Hypertension/chemically induced , Hypertension/metabolism , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Acetates/adverse effects , Acetates/metabolism , Fibrosis
3.
Cancer Sci ; 113(11): 3735-3750, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36047966

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with extremely poor prognosis. Gemcitabine resistance is a major challenge in the treatment of PDAC. Here, we showed that LINC00460 was associated with the response to gemcitabine both in PDAC patients and PDAC-PDX. After knocking down LINC00460 in PDAC tumor cells, results of RNA sequencing followed by gene ontology analysis indicated that LINC00460 influenced the activity of growth factors and modified the extracellular matrix. FISH showed that LINC00460 is mostly located in the cytoplasm. Results of RNA pull-down, LC-MS/MS, RIP, and immunoblotting confirmed that LINC00460 could directly bind to PDAP1. Furthermore, we demonstrated that LINC00460 mediated the cellular communication of PDAC tumor cells and CAFs by PDAP1/PDGFA/PDGFR signaling pathway and regulated the gemcitabine-resistance function of CAFs, which could be reversed by treatment with a PDGFR inhibitor (crenolanib). PDAC-PDX tumors with lower expression of LINC00460 showed a better response to gemcitabine plus crenolanib treatment. Our finding supported the application of LINC00460 in precision medicine that uses gemcitabine plus crenolanib to treat PDAC with low expression of LINC00460.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Chromatography, Liquid , Drug Resistance, Neoplasm/genetics , Intercellular Signaling Peptides and Proteins , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Tandem Mass Spectrometry , RNA, Long Noncoding/genetics , Gemcitabine , Pancreatic Neoplasms
4.
Mol Phylogenet Evol ; 166: 107329, 2022 01.
Article in English | MEDLINE | ID: mdl-34678410

ABSTRACT

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas. Here, we present the most comprehensively sampled molecular phylogeny of Ormosia to date, based on analysis of both nuclear (ITS) and plastid (matK and trnL-F) DNA sequences from 82 species of the genus. Phylogenetically-based divergence times and ancestral range estimations are employed to test hypotheses related to the biogeographical history of the genus. We find strong support for the monophyly of Ormosia and the grouping of all sampled Asian species of the genus into two comparably sized clades, one of which is sister to another large clade containing all sampled New World species. Within the New World clade, additional resolution supports the grouping of most species into three mutually exclusive subordinate clades. The remaining New World species form a fourth well-supported clade in the analyses of plastid sequences, but that result is contradicted by the analysis of ITS. With few exceptions the supported clades have not been previously recognized as taxonomic groups. The biogeographical analysis suggests that Ormosia originated in continental Asia and dispersed to the New World in the Oligocene or early Miocene via long-distance trans-oceanic dispersal. We reject the hypothesis that the inter-hemispheric disjunction in Ormosia resulted from fragmentation of a more continuous "Boreotropical" distribution since the dispersal post-dates Eocene climatic maxima. Both of the Old World clades appear to have originated in mainland Asia and subsequently dispersed into the Malay Archipelago and beyond, at least two lineages dispersing across Wallace's Line as far as the Solomon Islands and northeastern Australia. In the New World, the major clades all originated in Amazonia. Dispersal from Amazonia into peripheral areas in Central America, the Caribbean, and Extra-Amazonian Brazil occurred multiple times over varying time scales, the earliest beginning in the late Miocene. In a few cases, these dispersals were followed by local diversification, but not by reverse migration back to Amazonia. Within each of the two main areas of distribution, multiple modest bouts of oceanic dispersal were required to achieve the modern distributions.


Subject(s)
Fabaceae , Bayes Theorem , Biological Evolution , Fabaceae/genetics , Phylogeny , Phylogeography , Plastids/genetics
5.
Mol Phylogenet Evol ; 163: 107235, 2021 10.
Article in English | MEDLINE | ID: mdl-34146677

ABSTRACT

The inverted repeat-lacking clade (IRLC) is one of the most derived clades within the subfamily Papilionoideae of the legume family, and includes various economically important plants, e.g., chickpeas, peas, liquorice, and the largest genus of angiosperms, Astragalus. Tribe Wisterieae is one of the earliest diverged groups of the IRLC, and its generic delimitation and spatiotemporal diversification needs further clarifications. Based on genome skimming data, we herein reconstruct the phylogenomic framework of the IRLC, and infer the inter-generic relationships and historical biogeography of Wisterieae. We redefine tribe Caraganeae to contain Caragana only, and tribe Astragaleae is reduced to the Erophaca-Astragalean clade. The chloroplast capture scenario was hypothesized as the most plausible explanation of the topological incongruences between the chloroplast CDSs and nuclear ribosomal DNA trees in both the Glycyrrhizinae-Adinobotrys-Wisterieae clade and the Chesneyeae-Caraganeae-Hedysareae clade. A new name, Caragana lidou L. Duan & Z.Y. Chang, is proposed within Caraganeae. Thirteen genera are herein supported within Wisterieae, including a new genus, Villosocallerya L. Duan, J. Compton & Schrire, segregated from Callerya. Our biogeographic analyses suggest that Wisterieae originated in the late Eocene and its most recent common ancestor (MRCA) was distributed in continental southeastern Asia. Lineages of Wisterieae remained in the ancestral area from the early Oligocene to the early Miocene. By the middle Miocene, Whitfordiodendron and the MRCA of Callerya-Kanburia-Villosocallerya Clade became disjunct between the Sunda area and continental southeastern Asia, respectively; the MRCA of Wisteria migrated to North America via the Bering land bridge. The ancestor of Austrocallerya and Padbruggea migrated to the Wallacea-Oceania area, which split in the early Pliocene. In the Pleistocene, Wisteria brachybotrys, W. floribunda and Wisteriopsis japonica reached Japan, and Callerya cinerea dispersed to South Asia. This study provides a solid phylogenomic for further evolutionary/biogeographic/systematic investigations on the ecologically diverse and economically important IRLC legumes.


Subject(s)
Fabaceae , Biological Evolution , Fabaceae/genetics , Genome , Phylogeny , Phylogeography
6.
BMC Infect Dis ; 21(1): 302, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33765943

ABSTRACT

BACKGROUND: To explore population aging and the epidemic trend of pulmonary tuberculosis (PTB) in the elderly, and provide a basis for the prevention and control of pulmonary tuberculosis among the elderly. METHODS: We collected clinical information of 239,707 newly active PTB patients in Shandong Province from 2005 to 2017. We analyzed and compared the clinical characteristics, reported incidence and temporal trend of PTB among the elderly group (≥60 years) and the non-elderly group (< 60 years) through logistic model and Join-point regression model. RESULTS: Among the total PTB cases, 77,192(32.2%) were elderly. Compared with non-elderly patients, newly active elderly PTB patients account for a greater proportion of male cases (OR 1.688, 95% CI 1.656-1.722), rural population cases (OR 3.411, 95% CI 3.320-3.505) and bacteriologically confirmed PTB cases (OR 1.213, 95%CI 1.193-1.234). The annual reported incidence of total, elderly, pulmonary bacteriologically confirmed cases were 35.21, 68.84, 35.63 (per 100,000), respectively. The annual reported incidence of PTB in the whole population, the elderly group and the non-elderly group has shown a slow downward trend since 2008. The joinpoint regression model showed that the overall reported incidence of PTB in the elderly significantly decreased from 2007 to 2017 (APC = -5.3, P < 0.05). The reported incidence of bacteriologically confirmed PTB among elderly patients declined rapidly from 2005 to 2014(2005-2010 APC = -7.2%, P < 0.05; 2010-2014 APC = -22.6%, P < 0.05; 2014-2017 APC = -9.0%, P = 0.1). The reported incidence of clinically diagnosed PTB among elderly patients from 2005 to 2017 (11.48-38.42/100,000) increased by about 235%. It rose significantly from 2007 to 2014 (APC = 9.4, P<0.05). CONCLUSIONS: Compared with the non-elderly population, the reported incidence of PTB in the elderly population is higher. The main burden of PTB will shift to the elderly, men, rural population, and clinically diagnosed patients. With the intensification of aging, more researches on elderly PTB prevention and treatment will facilitate the realization of the global tuberculosis (TB) control targets.


Subject(s)
Aging , Tuberculosis, Pulmonary/epidemiology , Aged , China/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Rural Population , Tuberculosis, Pulmonary/diagnosis , Urban Population
7.
BMC Pulm Med ; 21(1): 399, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872558

ABSTRACT

BACKGROUND: Drug-resistant tuberculosis (DR-TB), obesity, and malnutrition are growing public health problems in the world. However, little has discussed the impact of different BMI status on the emergence of TB drug resistance. We aimed to explore the drug-resistant profiles of DR-TB and its clinical predictors among underweight, overweight or obesity population. METHODS: 8957 newly diagnosed TB cases with drug susceptibility results and BMI data in Shandong China, from 2004 to 2019 were enrolled. Multivariable and univariable logistic regression models were applied to investigate the impact of BMI on different drug-resistance. Clinical predicators and drug-resistant profiles of DR-TB among obesity, underweight, normal TB group were also described. RESULTS: Among 8957 TB cases, 6417 (71.64%) were normal weight, 2121 (23.68%) were underweight, 373 (4.16%) were overweight, and 46 (0.51%) were obese. The proportion of drug resistance and co-morbidity among normal weight, underweight, overweight, obese TB groups were 18.86%/18.25%/20.38%/23.91% (DR-TB), 11.19%/11.74%/9.65%/17.39% (mono-resistant tuberculosis, MR-TB), 3.41%/3.06%/5.36%/0.00% (multidrug resistant tuberculosis, MDR-TB), 4.21%/3.39%/5.36%/6.52% (polydrug resistant tuberculosis, PDR-TB), 10.57%/8.44%/19.57%/23.91% (co-morbidity), respectively. Compared with normal weight group, underweight were associated with lower risk of streptomycin-related resistance (OR 0.844, 95% CI 0.726-0.982), but contributed to a higher risk of MR-TB (isoniazid) (odds ratio (OR) 1.347, 95% CI 1.049-1.730; adjusted OR (aOR) 1.31, 95% CI 1.017-1.686), P < 0.05. In addition, overweight were positively associated with MDR-TB (OR 1.603, 95% CI 1.002-2.566; aOR 1.639, 95% CI 1.02-2.633), isoniazid + rifampicin + streptomycin resistance (OR 1.948, 95% confidence interval (CI): 1.061-3.577; aOR 2.113, 95% CI 1.141-3.912), Any isoniazid + streptomycin resistance (OR 1.472, 95% CI 1.013-2.14; aOR 1.483, 95% CI 1.017-2.164), P < 0.05. CONCLUSIONS: The higher risk of MDR-TB, isoniazid + rifampicin + streptomycin resistance, Any isoniazid + streptomycin resistance, and co-morbidity among overweight population implies that routine screening for drug sensitivity and more attention on co-morbidity among overweight TB cases may be necessary. In addition, underweight TB cases have a higher risk of isoniazid resistance. Our study suggests that an in-depth study of the interaction between host metabolic activity and infection of DR-TB may contribute more to novel treatment options or preventive measures, and accelerate the implementation of the STOP TB strategy.


Subject(s)
Overweight/complications , Overweight/epidemiology , Tuberculosis, Multidrug-Resistant/complications , Tuberculosis, Multidrug-Resistant/epidemiology , Adolescent , Adult , Aged , Antitubercular Agents/pharmacology , Body Mass Index , Child , Child, Preschool , China/epidemiology , Drug Resistance, Multiple, Bacterial , Female , Humans , Infant , Male , Middle Aged , Risk Factors , Tuberculosis, Multidrug-Resistant/drug therapy , Young Adult
8.
Ecotoxicol Environ Saf ; 219: 112352, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044311

ABSTRACT

BACKGROUND: Drug-resistant tuberculosis (DR-TB), diabetes and exposure to air pollution are thought to be important threat to human health, but no studies have explored the effects of ambient air pollutants on DR-TB when adjusting diabetes status so far. METHODS: We performed a study among 3759 newly diagnosed TB cases with drug-susceptibility testing results, diabetes status, and individual air pollution data in Shandong from 2015 to 2019. Generalized linear mixed models (GLMM) including three models (Model 1: without covariates, Model 2: adjusted by diabetes status only, Model 3: with all covariates) were applied. RESULTS: Of 3759 TB patients enrolled, 716 (19.05%) were DR-TB, and 333 (8.86%) had diabetes. High exposure to O3 was associated with an increased risk of RFP-resistance (Model 2 or 3: odds ratio (OR) = 1.008, 95% confidence intervals (CI): 1.002-1.014), ethambutol-resistance (Model 3: OR = 1.015, 95%CI: 1.004-1.027) and any rifampicin+streptomycin resistance (Model 1,2,3: OR = 1.01, 95%CI: 1.002-1.018) at 90 days. In contrast, NO2 was associated with a reduced risk of DR-TB (Model 3: OR = 0.99, 95%CI: 0.981-0.999) and multidrug-resistant TB (MDR-TB) (Model 3: OR = 0.977, 95%CI: 0.96-0.994) at 360 days. Additionally, SO2 (Model 1, 2, 3: OR = 0.987, 95%CI: 0.977-0.998) showed a protective effect on MDR-TB at 90 days. PM2.5 (90 days, Model 2: OR = 0.991, 95%CI: 0.983-0.999), PM10 (360 days, Model 2: OR = 0.992, 95%CI: 0.985-0.999) had protective effects on any RFP+SM resistance. CONCLUSIONS: O3 contributed to an elevated risk of TB resistance but PM2.5, PM10, SO2, NO2 showed an inverse effect. Air pollutants may affect the development of drug resistance among TB cases by adjusting the status of diabetes.


Subject(s)
Air Pollution/statistics & numerical data , Diabetes Mellitus/epidemiology , Environmental Exposure/statistics & numerical data , Tuberculosis, Multidrug-Resistant/epidemiology , Adult , Air Pollutants/analysis , Air Pollution/adverse effects , China/epidemiology , Humans , Linear Models , Male , Middle Aged , Particulate Matter/analysis , Tuberculosis, Multidrug-Resistant/diagnosis
9.
BMC Public Health ; 20(1): 1557, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33066742

ABSTRACT

BACKGROUND: Tuberculosis (TB) is one of the major infectious diseases that seriously endanger people's health. In Shandong province, the relationship between the level of economic development and TB incidence has not been studied. This study aims to provide more research basis for the government to prevent and control TB by exploring the impact of different economic factors on TB incidence. METHODS: By constructing threshold regression model (TRM), we described the extent to which different economic factors contribute to TB registered incidence and differences in TB registered incidence among seventeen cities with different levels of economic development in Shandong province, China, during 2006-2017. Data were retrieved from the China Information System for Disease Control and Prevention. RESULTS: Per capita medical expenditure (regression coefficient, -0.0314462; SD, 0.0079305; P > |t|, 0.000) and per capita savings (regression coefficient, 0.0001924; SD, 0.0000566; P > |t|, 0.001) passed the significance test at the level of 1%.They are the two economic indicators that have the greatest impact on TB registered incidence. Through the threshold test, we selected the per capita savings as the threshold variable. In the three stages of per capita savings (<9772.8086 China Yuan(CNY); 9772.8086-33,835.5391 CNY; >33,835.5391 CNY), rural per capita income always has a significant negative impact on the TB registered incidence (The regression coefficients are - 0.0015682, - 0.0028132 and - 0.0022253 respectively. P is 0.007,0.000 and 0.000 respectively.).In cities with good economies, TB registered incidence was 38.30% in 2006 and dropped to 25.10% by 2017. In cities with moderate economies, TB registered incidence peaked in 2008 at 43.10% and dropped to 27.1% by 2017.In poorer cities, TB registered incidence peaked in 2008 at 56.30% and dropped to 28.9% in 2017. CONCLUSION: We found that per capita savings and per capita medical expenditure are most closely related to the TB incidence. Therefore, relevant departments should formulate a more complete medical system and medical insurance policy to effectively solve the problem of "difficult and expensive medical treatment". In order to further reduce the TB incidence, in addition to timely and accurate diagnosis and treatment, it is more important for governments to increase investment in medicine and health care.


Subject(s)
Economic Development/statistics & numerical data , Tuberculosis/epidemiology , China/epidemiology , Cities/epidemiology , Humans , Incidence , Registries
10.
Cancer Sci ; 110(10): 3110-3121, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31385398

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fourth leading cause of cancer-related death worldwide. Our previous study showed that EYA4 functioned by suppressing growth of HCC tumor cells, but its molecular mechanism is still not elucidated. Based on the results of gene microassay, EYA4 was inversely correlated with MYCBP and was verified in human HCC tissues by immunohistochemistry and western blot. Overexpressed and KO EYA4 in human HCC cell lines confirmed the negative correlation between EYA4 and MYCBP by qRT-PCR and western blot. Transfected siRNA of MYCBP in EYA4 overexpressed cells and overexpressed MYCBP in EYA4 KO cells could efficiently rescue the proliferation and G2/M arrest effects of EYA4 on HCC cells. Mechanistically, armed with serine/threonine-specific protein phosphatase activity, EYA4 reduced nuclear translocation of ß-catenin by dephosphorylating ß-catenin at Ser552, thereby suppressing the transcription of MYCBP which was induced by ß-catenin/LEF1 binding to the promoter of MYCBP. Clinically, HCC patients with highly expressed EYA4 and poorly expressed MYCBP had significantly longer disease-free survival and overall survival than HCC patients with poorly expressed EYA4 and highly expressed MYCBP. In conclusion, EYA4 suppressed HCC tumor cell growth by repressing MYCBP by dephosphorylating ß-catenin S552. EYA4 combined with MYCBP could be potential prognostic biomarkers in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , DNA-Binding Proteins/genetics , Liver Neoplasms/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , beta Catenin/metabolism , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Male , Middle Aged , Phosphorylation , Prognosis , Serine/metabolism , Survival Analysis , Transcription Factors/metabolism , Transcription, Genetic , beta Catenin/chemistry
11.
Respir Res ; 20(1): 223, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31627757

ABSTRACT

BACKGROUND: Primary drug-resistant tuberculosis (DR-TB) has contributed to a significant health and economic burden on a global scale, especially in China. we sought to estimate epidemiological characteristics of primary DR-TB in China from 2004 to 2018. METHODS: Eleven thousand four hundred sixty-seven newly diagnosed and 1981 retreated TB cases with drug susceptibility data were included. Chi-Square test for trends, linear regression, a joinpoint regression model and temporal trend in proportions of the different resistance patterns were carried out. RESULTS: The proportion of primary DR-TB and mono-resistant TB (MR-TB) in China had reduced by more than 12% since 2004, and were 21.38%, 13.35% in 2018 respectively. Among primary DR-TB cases (2173,18.95%), the percentage of multiresistant TB (MDR-TB, from 5.41 to 17.46%), male (from 77.03 to 84.13%), cavity (from 13.51 to 43.92%), rifampicin(RFP)-resistant TB (from 8.11 to 26.98%), streptomycin(SM)-resistant TB (from 50.00 to 71.43%) increased significantly (P < 0.05). On the contrary, the proportion of female, non-cavity, isoniazide(INH)-resistant TB (from 55.41 to 48.15%) and MR-TB (from 82.43 to 62.43%) decreased significant (P < 0.05). The primary drug resistance rate among female, cavity, smoking, drinking, 15 to 44 year-old TB subgroups increased by 0.16, 6.24, 20.95, 158.85, 31.49%, respectively. The percentage of primary DR-TB, RFP-resistant TB dropped significantly during 2004-2007 in Joinpoint regression model. CONCLUSION: The total rate of drug resistance among new TB cases showed a downward trend in Shandong, China, from 2004 to 2018. Primary drug resistance patterns were shifting from female, non-cavity, INH-resistant TB, and MR-TB groups to male, cavity, RFP/SM-resistant TB, and MDR-TB groups. Considering the rising drug resistance rate among some special population, future control of primary DR-TB in China may require an increased focus on female, cavity, smoking, drinking, or 15 to 44 year-old TB subgroups.


Subject(s)
Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Adolescent , Adult , Aged , China/epidemiology , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/physiology , Tuberculosis, Multidrug-Resistant/diagnosis , Young Adult
12.
Ecol Evol ; 14(3): e11123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444723

ABSTRACT

Heterospecific pollen (HP) deposition varies widely among species in communities, which has been explicated by two adaptation strategies: HP avoidance and HP tolerance. Studies of the plant-pollinator network have uncovered that oceanic island communities are highly generalized and strongly connected. It remains unclear, however, which strategy prevails in such communities. We examined stigma pollen deposition on 29 plant species, and assessed patterns of HP load size and diversity in the Yongxing Island community. We assessed the effects of phenotypic specialization and species-level network structural properties of plant species on pollen deposition among species. The hypothesis of three accrual patterns of HP within species was tested by illustrating the relationship between conspecific pollen (CP) and HP receipt. Extensive variation occurred among species in HP receipt, while 75.9% of species received less than 10% HP and one species received more than 40% HP throughout the community. Flower size strongly drives the variation of HP receipt, while network structural properties had no effect on the pollen receipt. Nineteen species showed no relationship between the number of HP and CP loads, and they received smaller HP load sizes and lower HP proportions. Most plant species evolved HP avoidance strategy, and HP receipt was an occasional event for most plant species in the generalized community. HP and CP receipts are independent of each other in plant species with the HP avoidance mechanism. Our results highlight that plants in the generalized pollination system may preferentially select to minimize the HP load on stigmas.

13.
Environ Sci Pollut Res Int ; 31(18): 27240-27258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509309

ABSTRACT

Growing evidence has found the health protective effects of greenness exposure on tuberculosis (TB) and the impact of ambient air pollutants on TB drug-resistance. However, it remains unclear whether residential greenness is also beneficial to reduce TB drug-resistance, and whether air pollution modify the greenness-TB resistance relationship. We enrolled 5006 newly-diagnosed TB patients from Shandong, China, during 2014 to 2021. Normalized Difference Vegetation Index (NDVI) in 250 m and 500 m buffer around individuals' residential zone was used to assess greenness exposure. All patients were divided by quartiles of NDVI250-m and NDVI500-m (from low to high: Q1, Q2, Q3, Q4) respectively. Six logistic regression models (NDVI, NDVI + PM2.5/PM10/SO2/NO2/O3) were used to estimate the association of NDVI and TB drug-resistance when adjusting different air pollutants or not. All models were adjusted for age, gender, body mass index, complications, smoking, drinking, population density, nighttime light index, road density. Compared with participants in NDVI250-m Q1 and NDVI500-m Q1, other groups had lower rates of MDR-TB, PDR-TB, RFP-resistance, SM-resistance, RFP + SM resistance, INH + RFP + EMB + SM resistance. NDVI500-m reduced the risk of multidrug resistant tuberculosis (MDR-TB) and the adjusted odds ratio (aOR, 95% confidence interval, CI) compared with NDVI500-m Q1 were 0.736 (0.547-0.991) in NDVI + PM10 model, 0.733 (0.544-0.986) in NDVI + PM2.5 model, 0.735(0.546-0.99) in NDVI + SO2 model, 0.736 (0.546-0.991) in NDVI + NO2 model, respectively, P < 0.05. NDVI500-m contributed to a decreased risk of streptomycin (SM)-resistance. The aOR of rifampicin (RFP) + SM resistance were 0.132 (NDVI250-m, Q4 vs Q1, 95% CI: 0.03-0.578), 0.199 (NDVI500-m, Q3 vs. Q1, 95% CI: 0.057-0.688) and 0.264 (NDVI500-m, Q4 vs. Q1, 95% CI: 0.087-0.799). The adjusted ORs (Q2 vs. Q1, 95% CI) of isoniazid (INH) + RFP + ethambutol (EMB) + SM resistance in 500 m buffer were 0.276 (0.119-0.639) in NDVI model, 0.279 (0.11-0.705) in NDVI + PM10 model, 0.281 (0.111-0.713) in NDVI + PM2.5 model, 0.279 (0.11-0.709) in NDVI + SO2 model, 0.296 (0.117-0.754) in NDVI + NO2 model, 0.294 (0.116-0.748) in NDVI + O3 model, respectively. The study showed, for the first time, that residential greenness exposure in 500 m buffer is beneficial for reducing newly-diagnosed DR-TB (including PDR-RB, MDR-TB, MR-TB), and ambient air pollutants may partially mediate this association.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Tuberculosis, Multidrug-Resistant , Humans , China , Male , Female , Adult , Middle Aged
14.
Front Immunol ; 14: 1120034, 2023.
Article in English | MEDLINE | ID: mdl-36845112

ABSTRACT

PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.


Subject(s)
Apoptosis , Neurodegenerative Diseases , Humans , Apoptosis/physiology , Pyroptosis , Cell Death , Necroptosis , Neurodegenerative Diseases/therapy
15.
Cancer Lett ; 544: 215802, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35732215

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis. Its fibrotic tumor microenvironment (TME) plays a crucial role in promoting tumor invasion and metastasis, which eventually leads to a dismal 5-year survival rate in PDAC patients. Aortic carboxypeptidase-like protein (ACLP) promotes tissue fibrosis in benign diseases. However, its role in cancer-associated fibrosis remains unelucidated. Here, we show that ACLP was mainly expressed in cancer-associated fibroblasts (CAFs) but not in cancer cells and highly expressed in PDAC tissues. High ACLP expression was correlated with poor overall survival. Moreover, ACLP expression in PDAC patients with liver metastases was higher than that in PDAC patients without liver metastases. By detecting activation marker expression and CAF contractility and motility, we found that ACLP promoted CAF activation in PDAC, leading to TME fibrosis. Furthermore, ACLP-activated CAFs could promote cancer cell invasion in vitro and tumor metastasis in vivo. Mechanistically, ACLP promotes the expressions of MMP1 and MMP3 in CAFs, thus promoting PDAC invasion and metastasis. Intriguingly, we identified an ACLP-PPARγ-ACLP feedback loop in PDAC CAFs. Abatement of this feedback loop might be a promising approach in CAF-targeting PDAC treatment.


Subject(s)
Cancer-Associated Fibroblasts , Carboxypeptidases/metabolism , Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Repressor Proteins/metabolism , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Feedback , Fibrosis , Humans , Liver Neoplasms/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
16.
BMJ Open ; 12(7): e059149, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902191

ABSTRACT

OBJECTIVES: To investigate the independent and collective impact of alcohol drinking and tobacco smoking on the drug-resistance of newly diagnosed tuberculosis (TB). DESIGN: This was a retrospective cohort study. SETTING: Shandong, China. PARTICIPANTS: Patients with newly diagnosed TB from 1 January 2004 to 31 December 2020 were collected. Exclusive criteria: retreated cases; extrapulmonary tuberculosis; without information on drug susceptibility testing results, smoking or drinking habits; bacteriological identification as non-tuberculous mycobacteria. PRIMARY AND SECONDARY OUTCOME MEASURES: Patients were classified into four groups including smokers only (G1), drinker only (G2), smoker +drinker (G3), non-smoker +non-drinker group (G0). We described the drug-resistant profiles, clinical factors and calculated the ORs of different drug-resistance among G1, G2, G3, compared with G0 through univariate and multivariate logistics regression models. RESULTS: Of the 7996 TB cases enrolled, the proportions of G1, G2, G3 and G0 were 8.25%, 3.89%, 16.46% and 71.40%, respectively. The rates of drug-resistant (DR)-TB, mono-resistant TB, multidrug resistant (MDR)-TB, polydrug resistant TB in G1, G2, G3 and G0 were 19.24%/16.4%/17.33%/19.08%, 11.52%/8.68%/10.94%/11.63%, 3.03%/2.57%/2.96%/3.66% and 4.70%/4.82%/3.34%/ 4.08%, respectively. G3 had a higher risk of MDR1: isoniazid +rifampin (adjusted OR (aOR)=1.91, 95% CI: 1.036 to 3.532), but had a lower risk of DR-TB (aOR=0.84, 95% CI: 0.71 to 0.99), rifampin-related resistance (aOR=0.68, 95% CI: 0.49 to 0.93), streptomycin-related resistance (aOR=0.82, 95% CI: 0.68 to 0.99), ethambutol-related resistance (aOR=0.57, 95% CI: 0.34 to 0.95), MDR3: isoniazid +rifampin+streptomycin (aOR=0.41, 95% CI: 0.19 to 0.85), any isoniazid +streptomycin resistance (aOR=0.85, 95% CI: 0.71 to 1.00). However, there were no significant differences between G1 and G0, G2 and G0 in all drug-resistant subtypes. Those patients with cavity had a higher risk of DR-TB among G3 (OR=1.35, 95% CI: 1.01 to 1.81). CONCLUSION: Although we did not found an independent impact of alcohol drinking or tobacco smoking on TB drug-resistance, respectively, these two habits had a combined effect on TB drug-resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Alcohol Drinking/epidemiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , China/epidemiology , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Logistic Models , Microbial Sensitivity Tests , Retrospective Studies , Rifampin/pharmacology , Rifampin/therapeutic use , Streptomycin/pharmacology , Streptomycin/therapeutic use , Tobacco Smoking , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
17.
BMJ Open ; 11(6): e044349, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135033

ABSTRACT

OBJECTIVE: This study was designed to identify the risk factors for drug-resistant tuberculosis (DR-TB) and the association between comorbidity and drug resistance among retreated pulmonary tuberculosis (PTB). DESIGN: A retrospective study was conducted among all the 36 monitoring sites in Shandong, China, over a 16-year period. Baseline characteristics were collected from the TB Surveillance System. Categorical variables were compared by Fisher's exact or Pearson's χ2 test. The risk factors for drug resistance were identified using univariable analysis and multivariable logistic models. The influence of comorbidity on different types of drug resistance was evaluated by performing multivariable logistic models with the covariates adjusted by age, sex, body mass index, drinking/smoking history and cavity. RESULTS: A total of 10 975 patients with PTB were recorded during 2004-2019, and of these 1924 retreated PTB were finally included. Among retreated PTB, 26.2% were DR-TB and 12.5% had comorbidity. Smoking (adjusted OR (aOR): 1.69, 95% CI 1.19 to 2.39), cavity (aOR: 1.55, 95% CI 1.22 to 1.97) and comorbidity (aOR: 1.44, 95% CI 1.02 to 2.02) were risk factors for DR-TB. Of 504 DR-TB, 9.5% had diabetes mellitus, followed by hypertension (2.0%) and chronic obstructive pulmonary disease (1.8%). Patients with retreated PTB with comorbidity were more likely to be older, have more bad habits (smoking, alcohol abuse) and have clinical symptoms (expectoration, haemoptysis, weight loss). Comorbidity was significantly associated with DR-TB (aOR: 1.44, 95% CI 1.02 to 2.02), overall rifampin resistance (aOR: 2.17, 95% CI 1.41 to 3.36), overall streptomycin resistance (aOR: 1.51, 95% CI 1.00 to 2.27) and multidrug resistance (aOR: 1.96, 95% CI 1.17 to 3.27) compared with pan-susceptible patients (p<0.05). CONCLUSION: Smoking, cavity and comorbidity lead to an increased risk of drug resistance among retreated PTB. Strategies to improve the host's health, including smoking cessation, screening and treatment of comorbidity, might contribute to the control of tuberculosis, especially DR-TB, in China.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Antitubercular Agents/therapeutic use , China/epidemiology , Comorbidity , Humans , Retrospective Studies , Risk Factors , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology
18.
J Am Heart Assoc ; 10(16): e020554, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34350769

ABSTRACT

Background Adventitial remodeling is a pathological hallmark of hypertension that results in target organ damage. Activated adventitial fibroblasts have emerged as critical regulators in this process, but the precise mechanism remains unclear. Methods and Results Interleukin 11 (IL-11) knockout and wild-type mice were subjected to angiotensin II (Ang II) infusion to establish models of hypertension-associated vascular remodeling. IL-11 mRNA and protein were increased especially in the adventitia in response to Ang II. Compared with wild-type mice, Ang II-treated IL-11 knockout mice showed amelioration of vascular hypertrophy, adventitial fibrosis, macrophage infiltration, and inflammatory factor expression. Recombination mouse IL-11 exacerbated adventitial fibrosis in Ang II-infused wild-type mice. Interestingly, IL-11 neutralizing antibody attenuated adventitial fibrosis, macrophage infiltration, and inflammatory factor expression after Ang II infusion for 7 days. Mechanistically, in primary cultured adventitial fibroblasts, Krüppel-like factor 15 negatively regulated Ang II-induced IL-11 expression. Ang II increased extracellular signal-regulated kinases 1 and 2 activation, especially in adventitia, and caused biphasic extracellular signal-regulated kinases 1 and 2 activation in adventitial fibroblasts. A rapid and early activation increased IL-11 production through decreasing Krüppel-like factor 15 expression, which, in turn, induced the second extracellular signal-regulated kinases 1 and 2 activation, resulting in posttranscriptional profibrotic gene expression. Conclusions These results demonstrate that extracellular signal-regulated kinases 1 and 2 activation is important for Krüppel-like factor 15-mediated IL-11 expression in adventitial fibroblasts to promote adventitial remodeling in Ang II-induced hypertension. Therefore, targeting the Krüppel-like factor 15/IL-11 axis might serve as a new therapeutic strategy for vascular diseases.


Subject(s)
Adventitia/enzymology , Aorta, Thoracic/enzymology , Fibroblasts/enzymology , Hypertension/enzymology , Interleukin-11/metabolism , Kruppel-Like Transcription Factors/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Vascular Remodeling , Adventitia/pathology , Angiotensin II , Animals , Aorta, Thoracic/pathology , Disease Models, Animal , Fibroblasts/pathology , Fibrosis , HEK293 Cells , Humans , Hypertension/chemically induced , Hypertension/genetics , Hypertension/pathology , Inflammation Mediators/metabolism , Interleukin-11/genetics , Kruppel-Like Transcription Factors/genetics , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Rats, Sprague-Dawley , Signal Transduction
19.
Hypertension ; 77(3): 868-881, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33486984

ABSTRACT

Genome-wide association studies have identified that NPR-C (natriuretic peptide receptor-C) variants are associated with elevation of blood pressure. However, the mechanism underlying the relationship between NPR-C and blood pressure regulation remains elusive. Here, we investigate whether NPR-C regulates Ang II (angiotensin II)-induced hypertension through sodium transporters activity. Wild-type mice responded to continuous Ang II infusion with an increased renal NPR-C expression. Global NPR-C deficiency attenuated Ang II-induced increased blood pressure both in male and female mice associated with more diuretic and natriuretic responses to a saline challenge. Interestingly, Ang II increased both total and phosphorylation of NCC (NaCl cotransporter) abundance involving in activation of WNK4 (with-no-lysine kinase 4)/SPAK (Ste20-related proline/alanine-rich kinase) which was blunted by NPR-C deletion. NCC inhibitor, hydrochlorothiazide, failed to induce natriuresis in NPR-C knockout mice. Moreover, low-salt and high-salt diets-induced changes of total and phosphorylation of NCC expression were normalized by NPR-C deletion. Importantly, tubule-specific deletion of NPR-C also attenuated Ang II-induced elevated blood pressure, total and phosphorylation of NCC expression. Mechanistically, in distal convoluted tubule cells, Ang II dose and time-dependently upregulated WNK4/SPAK/NCC kinase pathway and NPR-C/Gi/PLC/PKC signaling pathway mediated NCC activation. These results demonstrate that NPR-C signaling regulates NCC function contributing to sodium retention-mediated elevated blood pressure, which suggests that NPR-C is a promising candidate for the treatment of sodium retention-related hypertension.


Subject(s)
Blood Pressure/physiology , Hypertension/physiopathology , Kidney/metabolism , Receptors, Atrial Natriuretic Factor/deficiency , Solute Carrier Family 12, Member 3/metabolism , Angiotensin II , Animals , Blood Pressure/genetics , Cells, Cultured , Female , Hypertension/chemically induced , Hypertension/genetics , Kidney Tubules, Distal/cytology , Kidney Tubules, Distal/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , Signal Transduction/genetics , Sodium/blood , Sodium/urine , Solute Carrier Family 12, Member 3/genetics
20.
Front Med (Lausanne) ; 8: 657006, 2021.
Article in English | MEDLINE | ID: mdl-34504847

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are two major infectious diseases posing significant public health threats, and their coinfection (aptly abbreviated COVID-TB) makes the situation worse. This study aimed to investigate the clinical features and prognosis of COVID-TB cases. Methods: The PubMed, Embase, Cochrane, CNKI, and Wanfang databases were searched for relevant studies published through December 18, 2020. An overview of COVID-TB case reports/case series was prepared that described their clinical characteristics and differences between survivors and deceased patients. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) for death or severe COVID-19 were calculated. The quality of outcomes was assessed using GRADEpro. Results: Thirty-six studies were included. Of 89 COVID-TB patients, 19 (23.46%) died, and 72 (80.90%) were male. The median age of non-survivors (53.95 ± 19.78 years) was greater than that of survivors (37.76 ± 15.54 years) (p < 0.001). Non-survivors were more likely to have hypertension (47.06 vs. 17.95%) or symptoms of dyspnea (72.73% vs. 30%) or bilateral lesions (73.68 vs. 47.14%), infiltrates (57.89 vs. 24.29%), tree in bud (10.53% vs. 0%), or a higher leucocyte count (12.9 [10.5-16.73] vs. 8.015 [4.8-8.97] × 109/L) than survivors (p < 0.05). In terms of treatment, 88.52% received anti-TB therapy, 50.82% received antibiotics, 22.95% received antiviral therapy, 26.23% received hydroxychloroquine, and 11.48% received corticosteroids. The pooled ORs of death or severe disease in the COVID-TB group and the non-TB group were 2.21 (95% CI: 1.80, 2.70) and 2.77 (95% CI: 1.33, 5.74) (P < 0.01), respectively. Conclusion: In summary, there appear to be some predictors of worse prognosis among COVID-TB cases. A moderate level of evidence suggests that COVID-TB patients are more likely to suffer severe disease or death than COVID-19 patients. Finally, routine screening for TB may be recommended among suspected or confirmed cases of COVID-19 in countries with high TB burden.

SELECTION OF CITATIONS
SEARCH DETAIL