Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Bioorg Med Chem Lett ; 23(16): 4608-16, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23845219

ABSTRACT

Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each other's loss. Thus, inhibition of both isoforms is likely required to block SphK dependent angiogenesis. A structure based approach was used to design and synthesize a series of SphK inhibitors resulting in the identification of the first potent inhibitors of both isoforms of human SphK. Additionally, to our knowledge, this series of inhibitors contains the only sufficiently potent inhibitors of murine SphK1 with suitable physico-chemical properties to pharmacologically interrogate the role of SphK1 in rodent models and to reproduce the phenotype of SphK1 (-/-) mice.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Small Molecule Libraries/chemical synthesis , Animals , Cells, Cultured , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Mice , Molecular Structure , Protein Isoforms/chemistry , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
3.
Clin Cancer Res ; 27(10): 2928-2937, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33504551

ABSTRACT

PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) remains a disease with high unmet medical need, as most patients do not achieve durable response with available treatments. Prostate-specific membrane antigen (PSMA) is a compelling target for mCRPC. It is highly expressed by primary and metastatic prostate cancer cells, with increased expression after progression on androgen deprivation therapy. EXPERIMENTAL DESIGN: We developed AMG 160, a half-life extended, bispecific T-cell engager immuno-oncology therapy that binds PSMA on prostate cancer cells and cluster of differentiation 3 on T cells for treatment of mCRPC. AMG 160 was evaluated in vitro and in mCRPC xenograft models. AMG 160 tolerability was assessed in nonhuman primates (NHP). AMG 160 activity as monotherapy and in combination with a PSMA-imaging agent, novel hormonal therapy, and immune checkpoint blockade was evaluated. RESULTS: AMG 160 induces potent, specific killing of PSMA-expressing prostate cancer cell lines in vitro, with half-maximal lysis of 6-42 pmol/L. In vivo, AMG 160 administered weekly at 0.2 mg/kg engages T cells administered systemically and promotes regression of established 22Rv-1 mCRPC xenograft tumors. AMG 160 is compatible with the imaging agent gallium 68-labeled PSMA-11, and shows enhanced cytotoxic activity when combined with enzalutamide or an anti-programmed death-1 antibody. AMG 160 exhibits an extended half-life and has an acceptable safety profile in NHPs. CONCLUSIONS: The preclinical characterization of AMG 160 highlights its potent antitumor activity in vitro and in vivo, and its potential for use with known diagnostic or therapeutic agents in mCRPC. These data support the ongoing clinical evaluation of AMG 160 in patients with mCRPC.See related commentary by Kamat et al., p. 2675.


Subject(s)
Adoptive Transfer/methods , Antigens, Surface/immunology , Glutamate Carboxypeptidase II/immunology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , T-Lymphocytes/immunology , Animals , CD3 Complex/antagonists & inhibitors , CD3 Complex/immunology , CD3 Complex/metabolism , Cell Line, Tumor , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Dose-Response Relationship, Immunologic , Glutamate Carboxypeptidase II/antagonists & inhibitors , Humans , Lymphocyte Activation/immunology , Male , Mice , Prostatic Neoplasms, Castration-Resistant/pathology , T-Lymphocytes/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 18(24): 6352-6, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18993068

ABSTRACT

A new series of pyrazolo[3,4-d]pyrimidine-3,6-diamines was designed and synthesized as potent and selective inhibitors of the nonreceptor tyrosine kinase, ACK1. These compounds arose from efforts to rigidify an earlier series of N-aryl pyrimidine-5-carboxamides. The synthesis and structure-activity relationships of this new series of inhibitors are reported. The most promising compounds were also profiled for their pharmacokinetic properties.


Subject(s)
Diamines/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Models, Chemical , Molecular Conformation , Protein-Tyrosine Kinases/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
6.
Structure ; 14(12): 1835-44, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17161373

ABSTRACT

Interleukin-1 (IL-1) receptor-associated kinase-4 (IRAK-4) is a serine/threonine kinase that plays an essential role in signal transduction by Toll/IL-1 receptors (TIRs). Here, we report the crystal structures of the phosphorylated human IRAK-4 kinase domain in complex with a potent inhibitor and with staurosporine to 2.0 and 2.2 A, respectively. The structures reveal that IRAK-4 has a unique tyrosine gatekeeper residue that interacts with the conserved glutamate from helix alphaC. Consequently, helix alphaC is "pulled in" to maintain the active orientation, and the usual pre-existing hydrophobic back pocket of the ATP-binding site is abolished. The peptide substrate-binding site is more open when compared with other protein kinases due to a marked movement of helix alphaG. The pattern of phosphate ligand interactions in the activation loop bears a close resemblance to that of a tyrosine kinase. Our results provide insights into IRAK-4 function and the design of selective inhibitors.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Glutamic Acid/chemistry , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Molecular Sequence Data , Phosphates/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein-Tyrosine Kinases/chemistry , Tyrosine/chemistry
7.
PLoS One ; 8(7): e68328, 2013.
Article in English | MEDLINE | ID: mdl-23861887

ABSTRACT

Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress. Despite numerous publications with supporting evidence, a clear experimental confirmation of the impact of this mechanism on tumor cell viability in vitro and in vivo has been hampered by the lack of suitable tool reagents. Utilizing a structure based design approach, we developed potent and specific SPHK1/2 inhibitors. These compounds completely inhibited intracellular S1P production in human cells and attenuated vascular permeability in mice, but did not lead to reduced tumor cell growth in vitro or in vivo. In addition, siRNA experiments targeting either SPHK1 or SPHK2 in a large panel of cell lines failed to demonstrate any statistically significant effects on cell viability. These results show that the SPHK rheostat does not play a major role in tumor cell viability, and that SPHKs might not be attractive targets for pharmacological intervention in the area of oncology.


Subject(s)
Neoplasms/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Capillary Permeability/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Female , Gene Knockdown Techniques , Humans , Inhibitory Concentration 50 , Mice , Neoplasms/genetics , Neoplasms/pathology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA Interference , Tumor Burden/drug effects , Tumor Stem Cell Assay , Vascular Endothelial Growth Factor A/pharmacology , Xenograft Model Antitumor Assays
8.
J Med Chem ; 55(8): 3837-51, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22458568

ABSTRACT

The eukaryotic initiation factor 4E (eIF4E) plays a central role in the initiation of gene translation and subsequent protein synthesis by binding the 5' terminal mRNA cap structure. We designed and synthesized a series of novel compounds that display potent binding affinity against eIF4E despite their lack of a ribose moiety, phosphate, and positive charge as present in m7-GMP. The biochemical activity of compound 33 is 95 nM for eIF4E in an SPA binding assay. More importantly, the compound has an IC(50) of 2.5 ĀµM for inhibiting cap-dependent mRNA translation in a rabbit reticular cell extract assay (RRL-IVT). This series of potent, truncated analogues could serve as a promising new starting point toward the design of neutral eIF4E inhibitors with physicochemical properties suitable for cellular activity assessment.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Guanine/analogs & derivatives , Guanosine Monophosphate/analogs & derivatives , Guanosine Monophosphate/pharmacology , Organophosphonates/chemical synthesis , RNA Caps/metabolism , Animals , Crystallography, X-Ray , Drug Design , Eukaryotic Initiation Factor-4E/chemistry , Guanine/chemical synthesis , Guanine/pharmacology , Guanosine Monophosphate/chemical synthesis , Humans , Inhibitory Concentration 50 , Models, Molecular , Organophosphonates/pharmacology , Phosphorous Acids , Protein Biosynthesis/drug effects , RNA Caps/chemistry , Rabbits , Reticulocytes/drug effects , Reticulocytes/metabolism , Structure-Activity Relationship
9.
Neoplasia ; 10(4): 340-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18392135

ABSTRACT

Midkine (MDK) is a heparin-binding growth factor involved in growth, survival, migration, and differentiation of various target cells and dysregulation of MDK signaling is implicated in a variety of inflammatory diseases and cancers. Although MDK has been reported to act on endothelial cells and to have proangiogenic effects, the exact role of MDK in angiogenesis is poorly defined. Here, we report that MDK is actually a modulator of angiogenesis and that it can abrogate the vascular endothelial growth factor A (VEGF-A)-induced proliferation of human microvascular endothelial cells in vitro through the downregulation of proangiogenic cytokines and through the upregulation of the antiangiogenic factor, tissue inhibitor of metalloproteinase 2. Phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) and of downstream signaling molecules, such as phosphatidylinositol-3-kinase and mitogen-activated protein kinases, is also impaired. Moreover, MDK downregulates VEGF-A-induced neovascularization and vascular permeability in vivo. We propose a model in which MDK is a new modulator of the VEGF-A-VEGFR-2 axis.


Subject(s)
Endothelium, Vascular/metabolism , Nerve Growth Factors/physiology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Blotting, Western , Capillary Permeability , Chickens , Chorioallantoic Membrane/pathology , Corneal Neovascularization/metabolism , Endothelium, Vascular/cytology , Enzyme-Linked Immunosorbent Assay , Female , Humans , In Vitro Techniques , Mice , Mice, Inbred BALB C , Midkine , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Proteins/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Rats , Signal Transduction , Skin , Tissue Inhibitor of Metalloproteinase-2/metabolism , Transforming Growth Factor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Anal Biochem ; 367(2): 179-89, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17592719

ABSTRACT

Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.


Subject(s)
Luminescent Measurements/methods , Protein-Tyrosine Kinases/analysis , Antibodies, Monoclonal , Electrochemistry/methods , Kinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Ruthenium Compounds/chemistry , Sensitivity and Specificity
12.
Proc Natl Acad Sci U S A ; 102(44): 15901-6, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16247015

ABSTRACT

Metastasis of primary tumors leads to a very poor prognosis for patients suffering from cancer. Although it is well established that not every tumor will eventually metastasize, it is less clear whether primary tumors acquire genetic alterations in a stochastic process at a late stage, which make them invasive, or whether genetic alterations acquired early in the process of tumor development drive primary tumor growth and determine whether this tumor is going to be metastatic. To address this issue, we tested genes identified in a large-scale comparative genomic hybridization analysis of primary tumor for their ability to confer metastatic properties on a cancer cell. We identified amplification of the ACK1 gene in primary tumors, which correlates with poor prognosis. We further show that overexpression of Ack1 in cancer cell lines can increase the invasive phenotype of these cells both in vitro and in vivo and leads to increased mortality in a mouse model of metastasis. Biochemical studies show that Ack1 is involved in extracellular matrix-induced integrin signaling, ultimately activating signaling processes like the activation of the small GTPase Rac. Taken together, this study supports a theory from Bernards and Weinberg [Bernards, R. & Weinberg, R. A. (2002) Nature 418, 823], which postulates that the tendency to metastasize is largely predetermined.


Subject(s)
Gene Amplification , Neoplasm Metastasis/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/physiology , Animals , Cell Line, Tumor , Crk-Associated Substrate Protein/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha3beta1/metabolism , Lung Neoplasms/secondary , Mice , Neoplasm Transplantation , Prognosis , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Transplantation, Heterologous , Tumor Cells, Cultured , rac GTP-Binding Proteins/metabolism
13.
Proc Natl Acad Sci U S A ; 99(8): 5567-72, 2002 Apr 16.
Article in English | MEDLINE | ID: mdl-11960013

ABSTRACT

Toll/IL-1 receptor family members are central components of host defense mechanisms in a variety of species. One well conserved element in their signal transduction is Ser/Thr kinases, which couple early signaling events in a receptor complex at the plasma membrane to larger signalosomes in the cytosol. The fruit fly Drosophila melanogaster has one member of this family of kinases, termed Pelle. The complexity of this pathway is vastly increased in vertebrates, and several Pelle homologs have been described and termed IL-1 receptor-associated kinase (IRAK). Here we report the identification of a novel and distinct member of the IRAK family, IRAK-4. IRAK-4 is the closest human homolog to Pelle. Endogenous IRAK-4 interacts with IRAK-1 and TRAF6 in an IL-1-dependent manner, and overexpression of IRAK-4 can activate NF-kappa B as well as mitogen-activated protein (MAP) kinase pathways. Most strikingly, and in contrast to the other IRAKs, IRAK-4 depends on its kinase activity to activate NF-kappa B. In addition, IRAK-4 is able to phosphorylate IRAK-1, and overexpression of dominant-negative IRAK-4 is blocking the IL-1-induced activation and modification of IRAK-1, suggesting a role of IRAK-4 as a central element in the early signal transduction of Toll/IL-1 receptors, upstream of IRAK-1.


Subject(s)
Drosophila Proteins , JNK Mitogen-Activated Protein Kinases , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Kinases/metabolism , Protein Kinases/physiology , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Blotting, Northern , Cloning, Molecular , DNA, Complementary/metabolism , Drosophila melanogaster , Enzyme Activation , Genes, Reporter , Humans , Immunoblotting , Interleukin-1/metabolism , Interleukin-1 Receptor-Associated Kinases , MAP Kinase Kinase 4 , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Data , Multigene Family , NF-kappa B/metabolism , Phosphorylation , Polymerase Chain Reaction , Precipitin Tests , Protein Binding , Protein Serine-Threonine Kinases/genetics , Proteins/metabolism , Receptors, Interleukin-1/metabolism , Recombinant Proteins/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6 , Time Factors , Tissue Distribution
14.
J Biol Chem ; 279(7): 5227-36, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14625308

ABSTRACT

The interleukin-1 receptor-associated kinase 1 (IRAK-1) is an important adapter in the signaling complex of the Toll/interleukin-1 (IL-1) receptor family. Formation of the signaling IL-1 receptor complex results in the activation and hyperphosphorylation of IRAK-1, which leads to a pronounced shift of its apparent molecular mass in gel electrophoresis. Presently, the individual residues phosphorylated in IRAK-1 and the consequences for IRAK-1 function are unknown. We define sequential phosphorylation steps in IRAK-1, which are, in vitro, autophosphorylation. First, IRAK-1 is phosphorylated at Thr209. By fluorescence energy transfer experiments, we demonstrate that Thr209 phosphorylation results in a conformational change of the kinase domain, permitting further phosphorylations to take place. Substitution of Thr209 by alanine results in a kinase-inactive IRAK-1. Second, Thr387 in the activation loop is phosphorylated, leading to full enzymatic activity. Third, IRAK-1 autophosphorylates several times in the proline-, serine-, and threonine-rich ProST region between the N-terminal death domain and kinase domain. Hyperphosphorylation of this region leads to dissociation of IRAK-1 from the upstream adapters MyD88 and Tollip but leaves its interaction with the downstream adapter TRAF6 unaffected. This identifies IRAK-1 as a novel type of adapter protein, which employs its own kinase activity to introduce negative charges adjacent to the protein interaction domain, which anchors IRAK-1 at the active receptor complex. Thus, IRAK-1 regulates its own availability as an adapter molecule by sequential autophosphorylation.


Subject(s)
Interleukin-1/metabolism , Intracellular Signaling Peptides and Proteins , Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Antigens, Differentiation/chemistry , Carrier Proteins/chemistry , Cell Line , Cloning, Molecular , Dimerization , Fluorescence Resonance Energy Transfer , Genetic Vectors , Humans , Immunoblotting , Interleukin-1 Receptor-Associated Kinases , Mass Spectrometry , Models, Biological , Molecular Sequence Data , Myeloid Differentiation Factor 88 , Phosphorylation , Precipitin Tests , Protein Conformation , Protein Structure, Tertiary , Receptors, Immunologic/chemistry , Receptors, Interleukin-1/metabolism , Signal Transduction , Spectrometry, Mass, Electrospray Ionization , Threonine/chemistry , Time Factors , Transfection
15.
Nature ; 416(6882): 750-6, 2002 Apr 18.
Article in English | MEDLINE | ID: mdl-11923871

ABSTRACT

Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns, and members of the pro-inflammatory interleukin-1 receptor (IL-1R) family, share homologies in their cytoplasmic domains called Toll/IL-1R/plant R gene homology (TIR) domains. Intracellular signalling mechanisms mediated by TIRs are similar, with MyD88 (refs 5-8) and TRAF6 (refs 9, 10) having critical roles. Signal transduction between MyD88 and TRAF6 is known to involve the serine-threonine kinase IL-1 receptor-associated kinase 1 (IRAK-1) and two homologous proteins, IRAK-2 (ref. 12) and IRAK-M. However, the physiological functions of the IRAK molecules remain unclear, and gene-targeting studies have shown that IRAK-1 is only partially required for IL-1R and TLR signalling. Here we show by gene-targeting that IRAK-4, an IRAK molecule closely related to the Drosophila Pelle protein, is indispensable for the responses of animals and cultured cells to IL-1 and ligands that stimulate various TLRs. IRAK-4-deficient animals are completely resistant to a lethal dose of lipopolysaccharide (LPS). In addition, animals lacking IRAK-4 are severely impaired in their responses to viral and bacterial challenges. Our results indicate that IRAK-4 has an essential role in innate immunity.


Subject(s)
Drosophila Proteins , Membrane Glycoproteins/metabolism , Protein Kinases/deficiency , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Receptors, Interleukin-1/metabolism , Signal Transduction , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Gene Deletion , Immunity, Innate/immunology , Interferon-gamma/analysis , Interleukin-1/biosynthesis , Interleukin-1/pharmacology , Interleukin-1 Receptor-Associated Kinases , Interleukin-6/biosynthesis , JNK Mitogen-Activated Protein Kinases , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Ligands , Lipopolysaccharides/pharmacology , Lymphocytic choriomeningitis virus/physiology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Protein Kinases/genetics , Signal Transduction/drug effects , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcus aureus/physiology , Toll-Like Receptors , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/pharmacology , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL