Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nat Immunol ; 22(6): 711-722, 2021 06.
Article in English | MEDLINE | ID: mdl-34017121

ABSTRACT

Chromatin undergoes extensive reprogramming during immune cell differentiation. Here we report the repression of controlled histone H3 amino terminus proteolytic cleavage (H3ΔN) during monocyte-to-macrophage development. This abundant histone mark in human peripheral blood monocytes is catalyzed by neutrophil serine proteases (NSPs) cathepsin G, neutrophil elastase and proteinase 3. NSPs are repressed as monocytes mature into macrophages. Integrative epigenomic analysis reveals widespread H3ΔN distribution across the genome in a monocytic cell line and primary monocytes, which becomes largely undetectable in fully differentiated macrophages. H3ΔN is enriched at permissive chromatin and actively transcribed genes. Simultaneous NSP depletion in monocytic cells results in H3ΔN loss and further increase in chromatin accessibility, which likely primes the chromatin for gene expression reprogramming. Importantly, H3ΔN is reduced in monocytes from patients with systemic juvenile idiopathic arthritis, an autoinflammatory disease with prominent macrophage involvement. Overall, we uncover an epigenetic mechanism that primes the chromatin to facilitate macrophage development.


Subject(s)
Arthritis, Juvenile/immunology , Cell Differentiation/immunology , Epigenesis, Genetic/immunology , Histones/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/immunology , Adolescent , Arthritis, Juvenile/blood , Arthritis, Juvenile/genetics , CRISPR-Cas Systems/genetics , Cathepsin G/genetics , Cathepsin G/metabolism , Cell Differentiation/genetics , Cell Nucleus/metabolism , Child , Child, Preschool , Chromatin/metabolism , Enzyme Assays , Epigenomics , Female , Gene Knockout Techniques , Humans , Jurkat Cells , Leukocyte Elastase/genetics , Leukocyte Elastase/metabolism , Leukocytes, Mononuclear/immunology , Macrophages/metabolism , Male , Myeloblastin/genetics , Myeloblastin/metabolism , Primary Cell Culture , Proteolysis , RNA-Seq , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , THP-1 Cells , Young Adult
2.
Nature ; 565(7739): 372-376, 2019 01.
Article in English | MEDLINE | ID: mdl-30626964

ABSTRACT

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.


Subject(s)
Actins/chemistry , Actins/metabolism , Dystocia/enzymology , Dystocia/prevention & control , Histidine/chemistry , Histidine/metabolism , Methyltransferases/metabolism , Animals , Cell Line , Female , Histone Methyltransferases , Histones , Litter Size/genetics , Male , Methylation , Methyltransferases/deficiency , Methyltransferases/genetics , Mice , Models, Molecular , Muscle, Smooth/cytology , Muscle, Smooth/physiology , Pregnancy , Proteomics , Uterine Contraction , Uterus/cytology , Uterus/physiology
3.
Anal Bioanal Chem ; 416(18): 4057-4070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842689

ABSTRACT

A novel ferrofluid prepared from a hydrophobic deep eutectic solvent (DES) and Fe3O4@graphite composite materials was introduced as a green microextraction medium for the separation and enrichment of trace estrogens in real samples. It was found that the ferrofluid greatly improved the capacity and selectivity of target analytes, benefiting from the enrichment of both DES and Fe3O4@graphite composite materials. Using a combination of high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and vortex-assisted liquid-liquid microextraction (VALLME), a new method was established for simultaneous rapid processing and accurate determination of three estrogens (estradiol [E2], estriol [E3], and ethinyl estradiol [EE2]) in environmental water and urine samples. Key parameters affecting the extraction efficiency were optimized using a single-factor approach and response surface methodology. Under optimal conditions, this method yielded a low limit of detection (1.01 ng L-1, 3.03 ng L-1, and 25.0 ng L-1 for EE2, E2, and E3, respectively), wide linear range (3-200,000 ng L-1), high enrichment factors (9.81-47.2), and satisfactory recovery (73.8-129.0%). Compared with traditional analytical techniques, this method avoids the use of volatile toxic organic extraction solvents and cumbersome phase separation operations.


Subject(s)
Estrogens , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Liquid Phase Microextraction , Water Pollutants, Chemical , Estrogens/urine , Estrogens/analysis , Water Pollutants, Chemical/urine , Water Pollutants, Chemical/analysis , Liquid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Deep Eutectic Solvents/chemistry , Humans
4.
BMC Plant Biol ; 23(1): 319, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316787

ABSTRACT

BACKGROUND: Deep rooting is an important factor affecting rice drought resistance. However, few genes have been identified to control this trait in rice. Previously, we identified several candidate genes by QTL mapping of the ratio of deep rooting and gene expression analysis in rice. RESULTS: In the present work, we cloned one of these candidate genes, OsSAUR11, which encodes a small auxin-up RNA (SAUR) protein. Overexpression of OsSAUR11 significantly enhanced the ratio of deep rooting of transgenic rice, but knockout of this gene did not significantly affect deep rooting. The expression of OsSAUR11 in rice root was induced by auxin and drought, and OsSAUR11-GFP was localized both in the plasma membrane and cell nucleus. Through an electrophoretic mobility shift assay and gene expression analysis in transgenic rice, we found that the transcription factor OsbZIP62 can bind to the promoter of OsSAUR11 and promote its expression. A luciferase complementary test showed that OsSAUR11 interacts with the protein phosphatase OsPP36. Additionally, expression of several auxin synthesis and transport genes (e.g., OsYUC5 and OsPIN2) were down-regulated in OsSAUR11-overexpressing rice plants. CONCLUSIONS: This study revealed a novel gene OsSAUR11 positively regulates deep rooting in rice, which provides an empirical basis for future improvement of rice root architecture and drought resistance.


Subject(s)
Oryza , Oryza/genetics , Chromosome Mapping , Cell Membrane , Indoleacetic Acids , RNA
5.
Plant J ; 108(2): 394-410, 2021 10.
Article in English | MEDLINE | ID: mdl-34318550

ABSTRACT

Glyoxalase I (GLYI) is part of the glyoxalase system; its major function is the detoxification of α-ketoaldehydes, including the potent and cytotoxic methylglyoxal (MG). Methylglyoxal disrupts mitochondrial respiration and increases production of reactive oxygen species (ROS), which also increase during pathogen infection of plant tissues; however, there have been few studies relating the glyoxalase system to the plant pathogen response. We used the promoter of VvGLYI-4 to screen the upstream transcription factors and report a NAC (NAM/ATAF/CUC) domain-containing transcription factor VvNAC72 in grapevine, which is localized to the nucleus. Our results show that VvNAC72 expression is induced by downy mildew, Plasmopara viticola, while the transcript level of VvGLYI-4 decreases. Further analysis revealed that VvNAC72 can bind directly to the promoter region of VvGLYI-4 via the CACGTG element, leading to inhibition of VvGLYI-4 transcription. Stable overexpression of VvNAC72 in grapevine and tobacco showed a decreased expression level of VvGLYI-4 and increased content of MG and ROS, as well as stronger resistance to pathogen stress. Taken together, these results demonstrate that grapevine VvNAC72 negatively modulates detoxification of MG through repression of VvGLYI-4, and finally enhances resistance to downy mildew, at least in part, via the modulation of MG-associated ROS homeostasis through a salicylic acid-mediated defense pathway.


Subject(s)
Lactoylglutathione Lyase/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Vitis/microbiology , Disease Resistance , Gene Expression Regulation, Plant , Lactoylglutathione Lyase/genetics , Oomycetes/pathogenicity , Plant Proteins/genetics , Plants, Genetically Modified , Pyruvaldehyde/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Transcription Factors/genetics , Vitis/genetics , Vitis/metabolism
6.
J Sep Sci ; 45(14): 2520-2528, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35569141

ABSTRACT

A novel method for detecting pesticide multi-residue in grass forage (alfalfa and oat) was established based on the one-step automatic extraction and purification technology of quick, easy, cheap, effective, rugged, and safe combined with ultrahigh-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry. The crushed sample was extracted with acetonitrile with 1% acetate, followed by a cleanup step with a primary-secondary amine, octadecylsilane, and graphitized carbon black. The extraction and purification were carried out using the one-step automatic pretreatment equipment. The target pesticides were acquired in positive ion electrospray ionization mode and full scan/data dependent secondary scan mode. The calibration curve shows good linearity over the corresponding concentration range, with the coefficient of determination greater than 0.99. The screening detection limits were 0.5-50 µg/kg, and the limit of quantification for the 206 pesticides was set at 1-50 µg/kg. At the spiking levels of one, two, and 10 times of limit of quantification, more than 95% of pesticides had recovery between 70-120%, with a relative standard deviation ≤20%. The method was proved to be simple, rapid, high-sensitivity, and could be routinely used for the high throughput screening and quantitative analysis of pesticide residues in alfalfa and oat.


Subject(s)
Pesticide Residues , Pesticides , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Pesticide Residues/analysis , Pesticides/analysis , Poaceae
7.
J Biol Chem ; 295(33): 11822-11832, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32611769

ABSTRACT

Protein-lysine methylation is a common posttranslational modification (PTM) throughout the human proteome that plays important roles in diverse biological processes. In humans, there are >100 known and candidate protein lysine methyltransferases (PKMTs), many of which are linked to human diseases. Methyltransferase-like protein 21C (METTL21C) is a PKMT implicated in muscle biology that has been reported to methylate valosin-containing protein/p97 (VCP) and heat shock 70-kDa protein 8 (HSPA8). However, a clear in vitro methyltransferase activity for METTL21C remains yet to be demonstrated, and whether it is an active enzyme that directly methylates substrate(s) in vivo is unclear. Here, we used an unbiased biochemistry-based screening assay coupled to MS, which identified alanine tRNA synthetase 1 (AARS1) as a direct substrate of METTL21C. We found that METTL21C catalyzes methylation of Lys-943 of AARS1 (AARS1-K943me) both in vitro and in vivoIn vitro METTL21C-mediated AARS1 methylation was independent of ATP or tRNA molecules. Unlike for AARS1, and in conflict with previous reports, we did not detect METTL21C methylation of VCP and HSPA8. AARS1-K943 methylation in HEK293T cells depends upon METTL21C levels. Finally, METTL2C was almost exclusively expressed in muscle tissue, and, accordingly, we detected METTL21C-catalyzed methylation of AARS1 in mouse skeletal muscle tissue. These results reveal that AARS1 is a bona fide in vitro substrate of METTL21C and suggest a role for the METTL21C-AARS1 axis in the regulation of protein synthesis in muscle tissue. Moreover, our study describes a straightforward protocol for elucidating the physiological substrates of poorly characterized or uncharacterized PKMTs.


Subject(s)
Methyltransferases/metabolism , Muscle, Skeletal/metabolism , Animals , HEK293 Cells , Humans , Lysine/metabolism , Methylation , Mice , Models, Molecular , Muscles/metabolism
8.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054040

ABSTRACT

NAC (no apical meristem (NAM), Arabidopsis thaliana transcription activation factor (ATAF1/2) and cup shaped cotyledon (CUC2)) transcription factors play crucial roles in plant development and stress responses. Nevertheless, to date, only a few reports regarding stress-related NAC genes are available in Malus baccata (L.) Borkh. In this study, the transcription factor MbNAC25 in M. baccata was isolated as a member of the plant-specific NAC family that regulates stress responses. Expression of MbNAC25 was induced by abiotic stresses such as drought, cold, high salinity and heat. The ORF of MbNAC25 is 1122 bp, encodes 373 amino acids and subcellular localization showed that MbNAC25 protein was localized in the nucleus. In addition, MbNAC25 was highly expressed in new leaves and stems using real-time PCR. To analyze the function of MbNAC25 in plants, we generated transgenic Arabidopsis plants that overexpressed MbNAC25. Under low-temperature stress (4 °C) and high-salt stress (200 mM NaCl), plants overexpressing MbNAC25 enhanced tolerance against cold and drought salinity conferring a higher survival rate than that of wild-type (WT). Correspondingly, the chlorophyll content, proline content, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly increased, while malondialdehyde (MDA) content was lower. These results indicated that the overexpression of MbNAC25 in Arabidopsis plants improved the tolerance to cold and salinity stress via enhanced scavenging capability of reactive oxygen species (ROS).


Subject(s)
Arabidopsis/genetics , Malus/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Arabidopsis/physiology , Cold-Shock Response , Gene Expression Regulation, Plant , Genes, Plant , Malus/physiology , Phylogeny , Plants, Genetically Modified/physiology , Salt Tolerance , Up-Regulation
9.
J Biol Chem ; 293(28): 11242-11250, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29728458

ABSTRACT

In the yeast Saccharomyces cerevisiae, genomic instability in rDNA repeat sequences is an underlying cause of cell aging and is suppressed by the chromatin-silencing factor Sir2. In humans, rDNA instability is observed in cancers and premature aging syndromes, but its underlying mechanisms and functional consequences remain unclear. Here, we uncovered a pivotal role of sirtuin 7 (SIRT7), a mammalian Sir2 homolog, in guarding against rDNA instability and show that this function of SIRT7 protects against senescence in primary human cells. We found that, mechanistically, SIRT7 is required for association of SNF2H (also called SMARCA5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A, member 5), a component of the nucleolar heterochromatin-silencing complex NoRC, with rDNA sequences. Defective rDNA-heterochromatin silencing in SIRT7-deficient cells unleashed rDNA instability, with excision and loss of rDNA gene copies, which in turn induced acute senescence. Mounting evidence indicates that accumulation of senescent cells significantly contributes to tissue dysfunction in aging-related pathologies. Our findings identify rDNA instability as a driver of mammalian cellular senescence and implicate SIRT7-dependent heterochromatin silencing in protecting against this process.


Subject(s)
Bone Neoplasms/pathology , Cellular Senescence , DNA, Ribosomal/genetics , Epigenesis, Genetic , Genomic Instability , Osteosarcoma/pathology , Sirtuins/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Osteosarcoma/genetics , Osteosarcoma/metabolism , Sirtuins/genetics , Transcription, Genetic , Tumor Cells, Cultured
10.
BMC Genomics ; 20(1): 362, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31072302

ABSTRACT

BACKGROUND: The glyoxalase system usually comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII). This system converts cytotoxic methylglyoxal (MG) into non-toxic D-lactate in the presence of reduced glutathione (GSH) in two enzymatic steps. Recently, a novel type of glyoxalase III (GLYIII) activity has observed in Escherichia coli that can detoxify MG into D-lactate directly, in one step, without a cofactor. Investigation of the glyoxalase enzymes of a number of plant species shows the importance of their roles in response both to abiotic and to biotic stresses. Until now, glyoxalase gene families have been identified in the genomes of four plants, Arabidopsis, Oryza sativa, Glycine max and Medicago truncatula but no similar study has been done with the grapevine Vitis vinifera L. RESULTS: In this study, four GLYI-like, two GLYII-like and three GLYIII-like genes are identified from the genome database of grape. All these genes were analysed in detail, including their chromosomal locations, phylogenetic relationships, exon-intron distributions, protein domain organisations and the presence of conserved binding sites. Using quantitative real-time PCR analysis (qRT-PCR), the expression profiles of these genes were analysed in different tissues of grape, and also when under infection stress from downy mildew (Plasmopara viticola). The study reveals that most VvGLY-like genes had higher expressions in stem, leaf, tendril and ovule but lower expressions in the flower. In addition, most of the VvGLY-like gene members were P. viticola responsive with high expressions 6-12 h and 96-120 h after inoculation. However, VvGLYI-like1 was highly expressed 48 h after inoculation, similar to VvPR1 and VvNPR1 which are involved in the defence response. CONCLUSIONS: This study identified the GLYI-like, GLYII-like and GLYIII-like full gene families of the grapevine. Based on a phylogenetic analysis and the presence of conserved binding sites, we speculate that these glyoxalase-like genes in grape encode active glyoxalases. Moreover, our study provides a basis for discussing the roles of VvGLYI-like, VvGLYII-like and VvGLYIII-like genes in grape's response to downy mildew infection. Our results shed light on the selection of candidate genes for downy mildew tolerance in grape and lay the foundation for further functional investigations of these glyoxalase genes.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Plant Diseases/microbiology , Plant Proteins/genetics , Vitis/genetics , Aldehyde Oxidoreductases/genetics , Disease Resistance , Lactoylglutathione Lyase/genetics , Oomycetes/physiology , Phylogeny , Plant Diseases/genetics , Thiolester Hydrolases/genetics , Vitis/growth & development , Vitis/microbiology
11.
Angew Chem Int Ed Engl ; 56(4): 1007-1011, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27990725

ABSTRACT

Sirtuins are protein deacylases regulating metabolism and stress responses, and are implicated in aging-related diseases. Small molecule activators for the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, such as for cancer. Activators are available for Sirt1 and exploit its unique N-terminus, whereas drug-like activators for Sirt2-7 are lacking. We synthesized and screened pyrrolo[1,2-a]quinoxaline derivatives, yielding the first synthetic Sirt6 activators. Biochemical assays show direct, substrate-independent compound binding to the Sirt6 catalytic core and potent activation of Sirt6-dependent deacetylation of peptide substrates and complete nucleosomes. Crystal structures of Sirt6/activator complexes reveal that the compounds bind to a Sirt6-specific acyl channel pocket and identify key interactions. Our results establish potent Sirt6 activation with small molecules and provide a structural basis for further development of Sirt6 activators as tools and therapeutics.


Subject(s)
Pyrroles/metabolism , Quinoxalines/metabolism , Sirtuins/metabolism , Small Molecule Libraries/metabolism , Humans , Models, Molecular , Molecular Structure , Pyrroles/chemistry , Quinoxalines/chemistry , Sirtuins/chemistry , Small Molecule Libraries/chemistry
12.
J Biol Chem ; 289(49): 34205-13, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25344604

ABSTRACT

E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity.


Subject(s)
Aging/genetics , Caenorhabditis elegans/genetics , Cellular Senescence/genetics , E2F1 Transcription Factor/genetics , Fibroblasts/metabolism , Forkhead Transcription Factors/genetics , Aging/metabolism , Animals , Binding Sites , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Catalase/genetics , Catalase/metabolism , Cell Line , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , E2F1 Transcription Factor/antagonists & inhibitors , E2F1 Transcription Factor/metabolism , Embryo, Mammalian , Fibroblasts/cytology , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Longevity/genetics , Mice , Protein Binding , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Exp Bot ; 66(15): 4749-57, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26022253

ABSTRACT

Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding.


Subject(s)
Oryza/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Chromosome Mapping , Genome-Wide Association Study , Oryza/metabolism
14.
Chemistry ; 21(14): 5345-9, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25704922

ABSTRACT

Steroid hormones play significant roles in both worms and mammalians. (25S)-Δ(7)-Dafachronic acid (Δ(7)-DA, 1) is a member of the dafachronic acid hormonal series that regulates both development and lifespan of C. elegans. Despite its importance, effective tools for the illumination of its mode of action are lacking. Herein, we report an efficient synthesis of trideuterated Δ(7)-DA, [5,24,25-D3]-(25S)-Δ(7)-dafachronic acid ([D3]-Δ(7)-DA, 2), as a useful chemical tool for subsequent biological studies. Key steps for this bioinspired synthesis approach include site-selective aliphatic C-H oxidation mediated by methyl(trifluoromethyl)dioxirane (TFDO), and the iridium/phosphine-oxazoline-catalyzed late-stage asymmetric deuterium reduction.


Subject(s)
Cholestenes/chemical synthesis , Animals , Catalysis , Cholestenes/chemistry , Deuterium/chemical synthesis , Deuterium/chemistry , Ethylene Oxide/analogs & derivatives , Ethylene Oxide/chemistry , Iridium/chemistry , Oxidation-Reduction , Phosphines/chemistry
15.
J Cereb Blood Flow Metab ; : 271678X241260100, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853430

ABSTRACT

White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.

16.
Sci Total Environ ; 949: 174754, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032745

ABSTRACT

OBJECTIVE: Improved understanding of metabolic obesity phenotypes holds great promise for personalized strategies to combat obesity and its co-morbidities. Such investigation is however lacking in Tibetans with unique living environments and lifestyle in the highlands. Effects of altitude on heterogeneous metabolic obesity phenotypes remain unexplored. METHODS: We defined metabolic obesity phenotypes i.e., metabolically healthy/unhealthy and obesity/normal weight in Tibetans (n = 1204) living at 2800 m in the suburb or over 4000 m in pastoral areas. 129 lipoprotein parameters and 25 low-molecular-weight metabolites were quantified and their associations with each phenotype were assessed using logistic regression models adjusting for potential confounders. The metabolic BMI (mBMI) was generated using a machine learning strategy and its relationship with prevalence of obesity co-morbidities and dietary exposures were investigated. RESULTS: Ultrahigh altitude positively associated with the metabolically healthy and non-obese phenotype and had a tendency towards a negative association with metabolically unhealthy phenotype. Phenotype-specific associations were found for 107 metabolites (e.g., lipoprotein subclasses, N-acetyl-glycoproteins, amino acids, fatty acids and lactate, p < 0.05), among which 55 were manipulated by altitude. The mBMI showed consistent yet more pronounced associations with cardiometabolic outcomes than BMI. The ORs for diabetes, prediabetes and hypertriglyceridemia were reduced in individuals residing at ultrahigh altitude compared to those residing at high altitude. The mBMI mediated the negative association between pastoral diet and prevalence of prediabetes, hypertension and hypertriglyceridemia, respectively. CONCLUSIONS: We found metabolite markers representing distinct obesity phenotypes associated with obesity co-morbidities and the modification effect of altitude, deciphering mechanisms underlying protective effect of ultrahigh altitude and the pastoral diet on metabolic health.

17.
Anal Chem ; 85(19): 9281-7, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24010904

ABSTRACT

Under favorable conditions, Caenorhabditis elegans larvae grow into reproductive adults after a series of molting cycles. When environmental conditions are harsh, they arrest as dauer larvae. Dafachronic acid (DA), a C. elegans steroid hormone, is required for reproductive development. Here, we report a mass spectrometry (MS) method for absolute quantitation of DA in C. elegans. The extraction of DA from C. elegans was optimized to achieve a recovery rate of greater than 83%. The MS sensitivity to DA increased 100-fold after carboxyl group derivatization with 2-picolylamine. High-resolution selected ion monitoring (HR-SIM) on a Q-Orbitrap mass spectrometer Q Exactive outperformed targeted-MS2 on the same instrument and selected reaction monitoring (SRM) on a triple-quadrupole mass spectrometer TSQ Quantum Discovery. With a limit of quantification as low as 1 pg of DA, the HR-SIM method enables absolute quantification of endogenous DA during the reproductive development of C. elegans. We found that in wild-type (WT) worms, DA increases from 0.04 ± 0.02 ng/mg protein in the L1 larval stage to 1.21 ± 0.67 ng/mg protein in the L2 larval stage and decreases again after the L3 stage. In comparison, four genetic mutants that have a constitutive dauer-formation phenotype due to disrupted insulin, TGF-ß, or cGMP signaling all have a very low DA level in the L2 stage (below 15% of the WT). These mutants are able to escape the dauer fate and most of them grow into fertile adults when supplied with exogenous DA. Therefore, a DA spike in the L2 stage is critical for the reproductive development of C. elegans.


Subject(s)
Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cholestenes/analysis , Animals , Cholestenes/metabolism , Mass Spectrometry , Molecular Structure
18.
Food Chem ; 406: 135060, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36459798

ABSTRACT

Antioxidants, widely utilized in the food packaging field, have a risk of migrating into foodstuffs and eventually entering the human body. In this work, a novel method was established for green extraction and determination of antioxidants in food simulants migrated from plastic packaging materials. It was found that the antioxidants could be extracted directly from food simulants by in-situ formation of hydrophobic deep eutectic solvents with low toxic medium-chain fatty alcohols. Under the optimal conditions, the limit of detection was 0.15 to 0.25 µg/L, and the limit of quantification was 0.5 to 1.0 µg/L for the antioxidants. The extraction reaches equilibrium in 2 min. Importantly, butylated hydroxytoluene was detected in two types of the surveyed food contact materials. The established method shows high sensitivity, high enrichment factor, and strong anti-interference ability, and can be used for the separation and enrichment of ultra-trace antioxidants in foodstuffs.


Subject(s)
Antioxidants , Plastics , Humans , Plastics/chemistry , Butylated Hydroxytoluene/analysis , Food Packaging/methods , Beverages/analysis , Food Contamination/analysis
19.
Water Res ; 229: 119460, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36493700

ABSTRACT

Bifunctional photocatalytic nanofiltration (PNF) membrane is increasingly concerned in practical micro-polluted water purification, but there are still several bottlenecks that inhibit its practicality. In this context, the feasibility of a novel metal-free and visible light-responsive surface-anchored PNF membrane for simultaneously removing target antibiotics in real sewage effluent in a continuous dynamic process was explored. The results showed that the optimal PNF-4 membrane was expectedly consisted of an inside tight sub-nanopore structured separation layer and an outside thinner, smoother, super hydrophilic mesoporous degradation layer, respectively. Consequently, the activated PNF-4 membrane could synergistically reduce trimethoprim and sulfamethoxazole concentrations to below two orders of magnitude, accompanying with almost constant high water permeability, suggesting that the hydrophilic modification of the mesoporous degradation layer basically offsets its inherent hydraulic resistance. Also, after repeating the fouling-physical rinsing process three times lasted for 78 h, only sporadic adherent contaminants remained onto the top surface, together with the minimal total and irreversible fouling ratios (as low as 7.2% and 1.2%, respectively), strongly demonstrated that PNF-4 membrane displayed good self-cleaning performance. Undoubtedly, this will significantly reduce its potential cleaning frequency and maintenance cost in long-term operation. Meanwhile, the acute and chronic biotoxicities of its permeate to Virbrio qinghaiensis sp. -67 were also reduced sharply to 2.22% and 0.45%, respectively. All of these evidences suggest that the dual functions of PNF-4 membrane are synergetic in an uninterrupted permeating process. It will provide useful insights for continuously enhancing the practicality and effectiveness of PNF membrane in actual micro-polluted water purification scenarios.


Subject(s)
Anti-Bacterial Agents , Water Purification , Sewage , Light , Sulfamethoxazole , Trimethoprim , Membranes, Artificial , Water Purification/methods
20.
Transl Stroke Res ; 14(6): 910-928, 2023 12.
Article in English | MEDLINE | ID: mdl-36181629

ABSTRACT

Ischemic-reperfusion injury limits the time window of recanalization therapy in cerebral acute ischemic stroke (AIS). Brain vessel endothelial cells (BVECs) form the first layer of the blood-brain barrier (BBB) and are thus the first sufferer of ischemic-reperfusion disorder. The current study demonstrates that melatonin can reduce infarct volume, alleviate brain edema, ameliorate neurological deficits, and protect BBB integrity in prolonged-stroke mice. Here, we demonstrate that endoplasmic reticulum (ER)-associated injury contributes to BVEC death in the dural phase of reperfusion after prolonged ischemia. When encountering ischemia, ER stress arises, specifically activating PERK-EIF2α signaling and the subsequent programmed cell death. Prolonged ischemia leads stress granules (SGs) to be refractory, which remain unresolved and accumulate in ER during recanalization. During reperfusion, refractory SGs activate PKR-EIF2α and further exacerbate BVEC injury. We report that melatonin treatment downregulates ER stress in the ischemic period and enhances dissociation of the refractory SGs during reperfusion, thus offering dual-phase protection to BVECs in prolonged cerebral stroke. Mechanistically, melatonin enhances autophagy in BVECs, which preserves ER function and resolves refractory SGs. We, therefore, propose that melatonin is a potential treatment to extend the time window of delayed recanalization therapy in AIS.


Subject(s)
Brain Ischemia , Ischemic Stroke , Melatonin , Stroke , Mice , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Endothelial Cells/metabolism , Stress Granules , Brain/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction , Stroke/drug therapy , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL