Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.594
Filter
1.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051369

ABSTRACT

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Subject(s)
Gastrointestinal Microbiome/genetics , Genes, Bacterial , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems/genetics , Clostridium/genetics , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Drug Resistance, Microbial/genetics , Female , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Germ-Free Life , Inflammation/pathology , Intestines/pathology , Male , Metabolome/genetics , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Insertional/genetics , Mutation/genetics , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
2.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36240781

ABSTRACT

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Gastrointestinal Microbiome/physiology , Nociceptors/physiology , Substance P , Dysbiosis , Inflammation
3.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34051138

ABSTRACT

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Subject(s)
Ecotype , Genetic Variation , Genome, Plant , Oryza/genetics , Adaptation, Physiological/genetics , Agriculture , Domestication , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genomic Structural Variation , Molecular Sequence Annotation , Phenotype
4.
Immunity ; 54(4): 648-659.e8, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33667383

ABSTRACT

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.


Subject(s)
Coinfection/immunology , DNA-Binding Proteins/immunology , Immune Tolerance/immunology , Inflammasomes/immunology , Signal Transduction/immunology , Animals , Apoptosis/immunology , Bacterial Infections/immunology , Burns/immunology , Burns/microbiology , Coinfection/microbiology , Humans , Interleukin-1beta/immunology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Stroke/immunology , Stroke/microbiology , T-Lymphocytes/immunology
5.
Nature ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961285

ABSTRACT

Genetic and fragmented palaeoanthropological data suggest that Denisovans were once widely distributed across eastern Eurasia1-3. Despite limited archaeological evidence, this indicates that Denisovans were capable of adapting to a highly diverse range of environments. Here we integrate zooarchaeological and proteomic analyses of the late Middle to Late Pleistocene faunal assemblage from Baishiya Karst Cave on the Tibetan Plateau, where a Denisovan mandible and Denisovan sedimentary mitochondrial DNA were found3,4. Using zooarchaeology by mass spectrometry, we identify a new hominin rib specimen that dates to approximately 48-32 thousand years ago (layer 3). Shotgun proteomic analysis taxonomically assigns this specimen to the Denisovan lineage, extending their presence at Baishiya Karst Cave well into the Late Pleistocene. Throughout the stratigraphic sequence, the faunal assemblage is dominated by Caprinae, together with megaherbivores, carnivores, small mammals and birds. The high proportion of anthropogenic modifications on the bone surfaces suggests that Denisovans were the primary agent of faunal accumulation. The chaîne opératoire of carcass processing indicates that animal taxa were exploited for their meat, marrow and hides, while bone was also used as raw material for the production of tools. Our results shed light on the behaviour of Denisovans and their adaptations to the diverse and fluctuating environments of the late Middle and Late Pleistocene of eastern Eurasia.

6.
Nature ; 611(7936): 578-584, 2022 11.
Article in English | MEDLINE | ID: mdl-36323778

ABSTRACT

Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.


Subject(s)
Bile Acids and Salts , Dietary Fiber , Gastrointestinal Microbiome , Inflammation , Inulin , Animals , Humans , Mice , Bile Acids and Salts/metabolism , Cholic Acid/pharmacology , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Immunity, Innate , Inflammation/chemically induced , Inflammation/classification , Inflammation/pathology , Inulin/pharmacology , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/immunology , Metabolomics , Lung/drug effects , Lung/pathology , Intestines/drug effects , Intestines/microbiology , Intestines/pathology , Interleukin-33/metabolism , Eosinophils/cytology , Eosinophils/drug effects , Eosinophils/immunology
7.
Genome Res ; 34(1): 20-33, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38190638

ABSTRACT

As an essential part of the central nervous system, white matter coordinates communications between different brain regions and is related to a wide range of neurodegenerative and neuropsychiatric disorders. Previous genome-wide association studies (GWASs) have uncovered loci associated with white matter microstructure. However, GWASs suffer from limited reproducibility and difficulties in detecting multi-single-nucleotide polymorphism (multi-SNP) and epistatic effects. In this study, we adopt the concept of supervariants, a combination of alleles in multiple loci, to account for potential multi-SNP effects. We perform supervariant identification and validation to identify loci associated with 22 white matter fractional anisotropy phenotypes derived from diffusion tensor imaging. To increase reproducibility, we use United Kingdom (UK) Biobank White British (n = 30,842) data for discovery and internal validation, and UK Biobank White but non-British (n = 1927) data, Europeans from the Adolescent Brain Cognitive Development study (n = 4399) data, and Europeans from the Human Connectome Project (n = 319) data for external validation. We identify 23 novel loci on the discovery set that have not been reported in the previous GWASs on white matter microstructure. Among them, three supervariants on genomic regions 5q35.1, 8p21.2, and 19q13.32 have P-values lower than 0.05 in the meta-analysis of the three independent validation data sets. These supervariants contain genetic variants located in genes that have been related to brain structures, cognitive functions, and neuropsychiatric diseases. Our findings provide a better understanding of the genetic architecture underlying white matter microstructure.


Subject(s)
White Matter , Humans , Adolescent , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Genome-Wide Association Study , Reproducibility of Results , Brain/diagnostic imaging
8.
Nature ; 583(7818): 768-770, 2020 07.
Article in English | MEDLINE | ID: mdl-32728241

ABSTRACT

Globular clusters are some of the oldest bound stellar structures observed in the Universe1. They are ubiquitous in large galaxies and are believed to trace intense star-formation events and the hierarchical build-up of structure2,3. Observations of globular clusters in the Milky Way, and a wide variety of other galaxies, have found evidence for a 'metallicity floor', whereby no globular clusters are found with chemical (metal) abundances below approximately 0.3 to 0.4 per cent of that of the Sun4-6. The existence of this metallicity floor may reflect a minimum mass and a maximum redshift for surviving globular clusters to form-both critical components for understanding the build-up of mass in the Universe7. Here we report measurements from the Southern Stellar Streams Spectroscopic Survey of the spatially thin, dynamically cold Phoenix stellar stream in the halo of the Milky Way. The properties of the Phoenix stream are consistent with it being the tidally disrupted remains of a globular cluster. However, its metal abundance ([Fe/H] = -2.7) is substantially below the empirical metallicity floor. The Phoenix stream thus represents the debris of the most metal-poor globular clusters discovered so far, and its progenitor is distinct from the present-day globular cluster population in the local Universe. Its existence implies that globular clusters below the metallicity floor have probably existed, but were destroyed during Galactic evolution.

9.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38091362

ABSTRACT

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Subject(s)
Parasites , Phosphoprotein Phosphatases , Toxoplasma , Animals , Humans , Mice , Catalytic Domain , Cell Cycle/genetics , Cell Division , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Virulence/genetics , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
10.
Plant Physiol ; 194(3): 1870-1888, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37930281

ABSTRACT

Homeodomain-leucine zipper (HD-Zip) I transcription factors are crucial for plant responses to drought, salt, and cold stresses. However, how they are associated with thermotolerance remains mostly unknown. We previously demonstrated that lily (Lilium longiflorum) LlHB16 (HOMEOBOX PROTEIN 16) promotes thermotolerance, whereas the roles of other HD-Zip I members are still unclear. Here, we conducted a transcriptomic analysis and identified a heat-responsive HD-Zip I gene, LlHOX6 (HOMEOBOX 6). We showed that LlHOX6 represses the establishment of basal thermotolerance in lily. LlHOX6 expression was rapidly activated by high temperature, and its protein localized to the nucleus. Heterologous expression of LlHOX6 in Arabidopsis (Arabidopsis thaliana) and overexpression in lily reduced their basal thermotolerance. In contrast, silencing LlHOX6 in lily elevated basal thermotolerance. Cooverexpressing or cosilencing LlHOX6 and LlHB16 in vivo compromised their functions in modulating basal thermotolerance. LlHOX6 interacted with itself and with LlHB16, although heterologous interactions were stronger than homologous ones. Notably, LlHOX6 directly bounds DNA elements to repress the expression of the LlHB16 target genes LlHSFA2 (HEAT STRESS TRANSCRIPTION FACTOR A2) and LlMBF1c (MULTIPROTEIN BRIDGING FACTOR 1C). Moreover, LlHB16 activated itself to form a positive feedback loop, while LlHOX6 repressed LlHB16 expression. The LlHOX6-LlHB16 heterooligomers exhibited stronger DNA binding to compete for LlHB16 homooligomers, thus weakening the transactivation ability of LlHB16 for LlHSFA2 and LlMBF1c and reducing its autoactivation. Altogether, our findings demonstrate that LlHOX6 interacts with LlHB16 to limit its transactivation, thereby impairing heat stress responses in lily.


Subject(s)
Arabidopsis , Lilium , Thermotolerance , Arabidopsis/genetics , DNA , Heat-Shock Response , Homeodomain Proteins/genetics , Lilium/genetics , Thermotolerance/genetics , Leucine Zippers/genetics
11.
Nucleic Acids Res ; 51(2): 619-630, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36546827

ABSTRACT

Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Casein Kinase II , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Phosphotransferases/genetics , Casein Kinase II/metabolism
12.
Genomics ; 116(1): 110774, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163574

ABSTRACT

Human VSTM1 (also known as SIRL1) is an inhibitory immune checkpoint receptor involved in leukocyte activation. Identification of the homologous genes in other species, such as mice and rats, will undoubtedly contribute to functional studies and clinical applications. Here, we successfully cloned the Vstm1 gene in rats, as supported by high-throughput sequencing data. However, Vstm1 is degenerated to a pseudogene in the mouse genome. Rat Vstm1 mRNA contains a complete open reading frame (ORF) of 630 nucleotides encoding 209 amino acids. Rat Vstm1 is highly expressed in bone marrow, especially in granulocytes. The expression levels of Vstm1 gradually increase with the development of granulocytes in bone marrow but are downregulated in response to inflammatory stimuli. Rat VSTM1 does not have an immunoreceptor tyrosine-based inhibitory motif (ITIM), however, it shows a conservative function of inflammatory inhibition with human VSTM1, and both are anti-correlated with many inflammatory cytokines, such as IL-1α and TNF-α. In bone marrow-derived macrophages (BMDMs), either rat or human VSTM1 suppressed the secretion of inflammatory cytokines in response to LPS stimulation. Further analysis in lung cancer microenvironment revealed that VSTM1 is mainly expressed in myeloid cells, anti-correlated with inflammatory cytokines and associated with tumor development and metastasis.


Subject(s)
Cytokines , Macrophages , Humans , Rats , Animals , Mice , Macrophages/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides
13.
Nano Lett ; 24(18): 5631-5638, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669049

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) based on CsPb(Br/I)3 nanocrystals (NCs) usually suffer from severe spectral instability under operating voltage due to the poor-quality PeNCs. Herein, zeolite was utilized to prepare high-quality CsPb(Br/I)3 NCs via promoting the homogeneous nucleation and growth and suppressing the Ostwald ripening of PeNCs. In addition, the decomposed zeolite interacted strongly with PeNCs through Pb-O bonds and hydrogen bonds, which inhibited the formation of defects and suppressed halide ion migration, leading to an improved photoluminescence quantum yield (PLQY) and enhanced stability of PeNCs. Moreover, the strong binding affinity of decomposed zeolite to PeNCs contributed to the formation of homogeneous perovskite films with high PLQY. As a result, pure-red PeLEDs with Commission International de I'Eclairage (CIE) coordinates of (0.705, 0.291) were fabricated, approaching the Rec. 2020 red primary color. The devices achieved a peak external quantum efficiency of 23.0% and outstanding spectral stability.

14.
J Neurosci ; 43(7): 1256-1266, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36609454

ABSTRACT

Effective rehabilitation in Parkinson's disease (PD) is related to brain reorganization with restoration of cortico-subcortical networks and compensation of frontoparietal networks; however, further neural rehabilitation evidence from a multidimensional perspective is needed. To investigate how multidisciplinary intensive rehabilitation treatment affects neurovascular coupling, 31 PD patients (20 female) before and after treatment and 30 healthy controls (17 female) underwent blood oxygenation level-dependent functional magnetic resonance imaging and arterial spin labeling scans. Cerebral blood flow (CBF) was used to measure perfusion, and fractional amplitude of low-frequency fluctuation (fALFF) was used to measure neural activity. The global CBF-fALFF correlation and regional CBF/fALFF ratio were calculated as neurovascular coupling. Dynamic causal modeling (DCM) was used to evaluate treatment-related alterations in the strength and directionality of information flow. Treatment reduced CBF-fALFF correlations. The altered CBF/fALFF exhibited increases in the left angular gyrus and the right inferior parietal gyrus and decreases in the bilateral thalamus and the right superior frontal gyrus. The CBF/fALFF alteration in right superior frontal gyrus showed correlations with motor improvement. Further, DCM indicated increases in connectivity from the superior frontal gyrus and decreases from the thalamus to the inferior parietal gyrus. The benefits of rehabilitation were reflected in the dual mechanism, with restoration of executive control occurring in the initial phase of motor learning and compensation of information integration occurring in the latter phase. These findings may yield multimodal insights into the role of rehabilitation in disease modification and identify the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD.SIGNIFICANCE STATEMENT Although rehabilitation has been proposed as a promising supplemental treatment for PD as it results in brain reorganization, restoring cortico-subcortical networks and eliciting compensatory activation of frontoparietal networks, further multimodal evidence of the neural mechanisms underlying rehabilitation is needed. We measured the ratio of perfusion and neural activity derived from arterial spin labeling and blood oxygenation level-dependent fMRI data and found that benefits of rehabilitation seem to be related to the dual mechanism, restoring executive control in the initial phase of motor learning and compensating for information integration in the latter phase. We also identified the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD patients.


Subject(s)
Neurovascular Coupling , Parkinson Disease , Humans , Female , Neurovascular Coupling/physiology , Brain/diagnostic imaging , Brain/pathology , Prefrontal Cortex , Magnetic Resonance Imaging/methods , Spin Labels
15.
J Cell Mol Med ; 28(1): e18004, 2024 01.
Article in English | MEDLINE | ID: mdl-37864300

ABSTRACT

Nonsyndromic hearing loss (NSHL) is a genetically diverse, highly heterogeneous condition characterised by deafness, and Gasdermin E (GSDME) variants have been identified as directly inducing autosomal dominant NSHL. While many NSHL cases associated with GSDME involve the skipping of exon 8, there is another, less understood pathogenic insertion variant specifically found in Chinese pedigrees that causes deafness, known as autosomal dominant 5 (DFNA5) hearing loss. In this study, we recruited a large Chinese pedigree, conducted whole-exome and Sanger sequencing to serve as a comprehensive clinical examination, and extracted genomic DNA samples for co-segregation analysis of the members. Conservation and expression analyses for GSDME were also conducted. Our clinical examinations revealed an autosomal dominant phenotype of hearing loss in the family. Genetic analysis identified a novel insertion variant in GSDME exon 8 (GSDME: NM_004403.3: c.1113_1114insGGGGTGCAGCTTACAGGGTGGGTGT: p. P372fs*36). This variant is segregated with the deafness phenotype of this pedigree. The GSDME gene was highly conserved in the different species we analysed, and its mRNA expression was ubiquitously low in different human tissues. In conclusion, we have successfully identified a novel pathogenic insertion variant of GSDME in a Chinese pedigree that causes deafness, shedding light on the genetic basis of hearing loss within this specific family. Our findings expand the spectrum of known variants associated with GSDME-related deafness and may further support both the underlying gain-of-function mechanism and functional associations of GSDME hearing loss variants.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Humans , Pedigree , Hearing Loss/genetics , Deafness/genetics , China , Mutation , Hearing Loss, Sensorineural/genetics
16.
Neuroimage ; 294: 120641, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735423

ABSTRACT

Adaptive decision-making, which is often impaired in various psychiatric conditions, is essential for well-being. Recent evidence has indicated that decision-making capacity in multiple tasks could be accounted for by latent dimensions, enlightening the question of whether there is a common disruption of brain networks in economic decision-making across psychiatric conditions. Here, we addressed the issue by combining activation/lesion network mapping analyses with a transdiagnostic brain imaging meta-analysis. Our findings indicate that there were transdiagnostic alterations in the thalamus and ventral striatum during the decision or outcome stage of decision-making. The identified regions represent key nodes in a large-scale network, which is composed of multiple heterogeneous brain regions and plays a causal role in motivational functioning. The findings suggest that disturbances in the network associated with emotion- and reward-related processing play a key role in dysfunctions of decision-making observed in various psychiatric conditions. This study provides the first meta-analytic evidence of common neural alterations linked to deficits in economic decision-making.


Subject(s)
Decision Making , Mental Disorders , Humans , Decision Making/physiology , Mental Disorders/physiopathology , Magnetic Resonance Imaging , Reward , Brain Mapping/methods , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiology , Ventral Striatum/physiopathology , Brain/physiology , Brain/diagnostic imaging , Brain/physiopathology , Thalamus/diagnostic imaging , Thalamus/physiology , Adult
17.
Neuroimage ; 297: 120707, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942102

ABSTRACT

Under resource distribution context, individuals have a strong aversion to unfair treatment not only toward themselves but also toward others. However, there is no clear consensus regarding the commonality and distinction between these two types of unfairness. Moreover, many neuroimaging studies have investigated how people evaluate and respond to unfairness in the abovementioned two contexts, but the consistency of the results remains to be investigated. To resolve these two issues, we sought to summarize existing findings regarding unfairness to self and others and to further elucidate the neural underpinnings related to distinguishing evaluation and response processes through meta-analyses of previous neuroimaging studies. Our results indicated that both types of unfairness consistently activate the affective and conflict-related anterior insula (AI) and dorsal anterior cingulate cortex/supplementary motor area (dACC/SMA), but the activations related to unfairness to self appeared stronger than those related to others, suggesting that individuals had negative reactions to both unfairness and a greater aversive response toward unfairness to self. During the evaluation process, unfairness to self activated the bilateral AI, dACC, and right dorsolateral prefrontal cortex (DLPFC), regions associated with unfairness aversion, conflict, and cognitive control, indicating reactive, emotional and automatic responses. In contrast, unfairness to others activated areas associated with theory of mind, the inferior parietal lobule and temporoparietal junction (IPL-TPJ), suggesting that making rational judgments from the perspective of others was needed. During the response, unfairness to self activated the affective-related left AI and striatum, whereas unfairness to others activated cognitive control areas, the left DLPFC and the thalamus. This indicated that the former maintained the traits of automaticity and emotionality, whereas the latter necessitated cognitive control. These findings provide a fine-grained description of the common and distinct neurocognitive mechanisms underlying unfairness to self and unfairness to others. Overall, this study not only validates the inequity aversion model but also provides direct evidence of neural mechanisms for neurobiological models of fairness.

18.
Immunology ; 171(4): 595-608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38205925

ABSTRACT

Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.


Subject(s)
Asthma , Gastrointestinal Microbiome , Mycobacteriaceae , Mycobacterium , Mice , Animals , Inflammation , Mice, Inbred BALB C , Ovalbumin , Disease Models, Animal , Lung , Bronchoalveolar Lavage Fluid
19.
J Cell Biochem ; : e30620, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923014

ABSTRACT

Hepatocellular carcinoma (HCC) poses a significant challenge with dismal survival rates, necessitating a deeper understanding of its molecular mechanisms and the development of improved therapies. Metabolic reprogramming, particularly heightened glycolysis, plays a crucial role in HCC progression. Glycolysis-associated genes (GAGs) emerge as key players in HCC pathogenesis, influencing the tumor microenvironment and immune responses. This study aims to investigate the intricate interplay between GAGs and the immune landscape within HCC, offering valuable insights into potential prognostic markers and therapeutic targets to enhance treatment strategies and patient outcomes. Through the exploration of GAGs, we have identified two distinct molecular glycolytic subtypes in HCC patients, each exhibiting significant differences in both the immune microenvironment and prognosis. A risk model comprising five key GAGs was formulated and subsequently evaluated for their predictive accuracy. Our findings underscore the diverse tumor microenvironment and immune responses associated with the varying glycolytic subtypes observed in HCC. The identified key GAGs hold promise as prognostic indicators for evaluating HCC risk levels, predicting patient outcomes, and guiding clinical treatment decisions, particularly in the context of anticipating responses to immunotherapy drugs.

20.
Emerg Infect Dis ; 30(1): 39-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146979

ABSTRACT

Streptococcus pneumoniae is an opportunistic pathogen that causes substantial illness and death among children worldwide. The genetic backgrounds of pneumococci that cause infection versus asymptomatic carriage vary substantially. To determine the evolutionary mechanisms of opportunistic pathogenicity, we conducted a genomic surveillance study in China. We collected 783 S. pneumoniae isolates from infected and asymptomatic children. By using a 2-stage genomewide association study process, we compared genomic differences between infection and carriage isolates to address genomic variation associated with pathogenicity. We identified 8 consensus k-mers associated with adherence, antimicrobial resistance, and immune modulation, which were unevenly distributed in the infection isolates. Classification accuracy of the best k-mer predictor for S. pneumoniae infection was good, giving a simple target for predicting pathogenic isolates. Our findings suggest that S. pneumoniae pathogenicity is complex and multifactorial, and we provide genetic evidence for precise targeted interventions.


Subject(s)
Biological Evolution , Streptococcus pneumoniae , Child , Humans , Streptococcus pneumoniae/genetics , China/epidemiology , Genome-Wide Association Study , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL