Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
J Immunol ; 212(11): 1714-1721, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598411

ABSTRACT

Ag-specific effector CD4+ T cells play a crucial role in defending against exogenous pathogens. However, the mechanisms governing the differentiation and function of IFN-γ-producing effector CD4+ Th1 cells in immune responses remain largely unknown. In this study, we elucidated the pivotal role of zinc finger protein 335 (Zfp335) in regulating effector Th1 cell differentiation and survival during acute bacterial infection. Mice with Zfp335 knockout in OT-II cells exhibited impaired Ag-specific CD4+ T cell expansion accompanied by a significant reduction in resistance to Listeria infection. Furthermore, Zfp335 deficiency restricted the effector CD4+ Th1 cell population and compromised their survival upon Listeria challenge. The expression of T-bet and IFN-γ was accordingly decreased in Zfp335-deficient Th1 cells. Mechanistically, Zfp335 directly bound to the promoter region of the Lmna gene and regulated its expression. Overexpression of Lmna was able to rescue the survival and function of Zfp335-deficient effector Th1 cells. Therefore, our study provides novel insights into the mechanisms governing effector Th1 cell differentiation and survival during acute infection.


Subject(s)
Cell Differentiation , DNA-Binding Proteins , Lamin Type A , Mice, Knockout , Th1 Cells , Transcription Factors , Animals , Mice , Cell Differentiation/immunology , Cell Differentiation/genetics , Cell Survival/genetics , Cell Survival/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lamin Type A/genetics , Listeriosis/immunology , Mice, Inbred C57BL , Th1 Cells/immunology , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777955

ABSTRACT

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , GTP Phosphohydrolases , Myocytes, Cardiac , Phosphofructokinase-2 , Ubiquitination , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Oxidative Stress , Apoptosis/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Glycolysis , Humans , Protein Stability
3.
Proc Natl Acad Sci U S A ; 119(32): e2123379119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914151

ABSTRACT

Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.


Subject(s)
Depsipeptides , Fungal Proteins , Fungi , Amino Acids/chemistry , Carbohydrate Metabolism , Chemometrics , Depsipeptides/chemistry , Depsipeptides/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungi/genetics , Fungi/metabolism , Multigene Family , Peptide Biosynthesis, Nucleic Acid-Independent , Peptide Synthases/chemistry , Sugars
4.
J Biol Chem ; 299(4): 103054, 2023 04.
Article in English | MEDLINE | ID: mdl-36822329

ABSTRACT

The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.


Subject(s)
Deubiquitinating Enzymes , Ferroptosis , Histone-Lysine N-Methyltransferase , Ubiquitin-Conjugating Enzymes , Deubiquitinating Enzymes/metabolism , Lysine/metabolism , Protein Binding , Reactive Oxygen Species/metabolism , Ubiquitination , Humans , Histone-Lysine N-Methyltransferase/metabolism
5.
BMC Med ; 22(1): 62, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331793

ABSTRACT

BACKGROUND: The distal transradial access (dTRA) has become an attractive and alternative access to the conventional transradial access (TRA) for cardiovascular interventional diagnosis and/or treatment. There was a lack of randomized clinical trials to evaluate the effect of the dTRA on the long-term radial artery occlusion (RAO). METHODS: This was a prospective, randomized controlled study. The primary endpoint was the incidence of long-term RAO at 3 months after discharge. The secondary endpoints included the successful puncture rate, puncture time, and other access-related complications. RESULTS: The incidence of long-term RAO was 0.8% (3/361) for dTRA and 3.3% (12/365) for TRA (risk ratio = 0.25, 95% confidence interval = 0.07-0.88, P = 0.02). The incidence of RAO at 24 h was significantly lower in the dTRA group than in the TRA group (2.5% vs. 6.7%, P < 0.01). The puncture success rate (96.0% vs. 98.5%, P = 0.03) and single puncture attempt (70.9% vs. 83.9%, P < 0.01) were significantly lower in the dTRA group than in the TRA group. However, the number of puncture attempts and puncture time were higher in the dTRA group. The dTRA group had a lower incidence of bleeding than the TRA group (1.5% vs. 6.0%, P < 0.01). There was no difference in the success rate of the procedure, total fluoroscopy time, or incidence of other access-related complications between the two groups. In the per-protocol analysis, the incidence of mEASY type ≥ II haematoma was significantly lower in the dTRA group, which was consistent with that in the as-treated analysis. CONCLUSIONS: The dTRA significantly reduced the incidence of long-term RAO, bleeding or haematoma. TRIAL REGISTRATION: ClinicalTrials.gov identifer: NCT05253820.


Subject(s)
Arterial Occlusive Diseases , Percutaneous Coronary Intervention , Humans , Radial Artery/surgery , Prospective Studies , Arterial Occlusive Diseases/diagnostic imaging , Arterial Occlusive Diseases/epidemiology , Hemorrhage , Hematoma/etiology , Hematoma/complications , Coronary Angiography/adverse effects , Coronary Angiography/methods , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Treatment Outcome
6.
J Med Virol ; 96(1): e29380, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235849

ABSTRACT

Hepatic venous pressure gradient (HVPG) is the gold standard for evaluating clinically significant portal hypertension (CSPH). However, reliable noninvasive methods are limited. Our study aims to investigate the diagnostic value of serum Golgi protein 73 (GP73) for CSPH in patients with compensated cirrhosis. The study enrolled 262 consecutive patients with compensated cirrhosis from three centers in China from February 2021 to September 2023, who underwent both serum GP73 tests and HVPG measurements. CSPH was defined as HVPG ≥ 10 mmHg. Diagnostic accuracy was evaluated using the areas under the receiver operating characteristic curve (AUC). The prevalence of CSPH was 56.9% (n = 149). There were significant differences between the CSPH and non-CSPH groups in the median serum GP73 level (126.8 vs. 73.1 ng/mL, p < 0.001). GP73 level showed a significant positive linear correlation with HVPG (r = 0.459, p < 0.001). The AUC for the diagnosis of CSPH using serum GP73 alone was 0.75 (95% confidence interval [CI] 0.68-0.81). Multivariate logistic regression analysis determined that the levels of GP73, platelets and international normalized ratio were independently associated with CSPH. The combination of these three markers was termed "IP73" score with an AUC value of 0.85 (95% CI 0.80-0.89) for CSPH. Using 0 as a cut-off value, the specificity and sensitivity of IP73 score were 77.9% and 81.9%, respectively. The IP73 score offers a novel, simple and noninvasive method of assessing CSPH in patients with compensated cirrhosis. A cut-off value of the IP73 score at 0 can distinguish patients with or without CSPH.


Subject(s)
Elasticity Imaging Techniques , Hypertension, Portal , Humans , Biomarkers , Hypertension, Portal/complications , Hypertension, Portal/diagnosis , Liver , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , ROC Curve , Time Factors
7.
Horm Metab Res ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37956980

ABSTRACT

The aim of this study is to report the risk factors of severe statin induced liver injury (SILI). From the database of Shandong ADR Monitoring Center and Outpatients and inpatients in our hospital, SILI cases reported from 2013 to 2021 were extracted and screened. The diagnostic criteria of SILI, the inclusion and exclusion criteria of severe and general SILI were established separately. After the SILI cases were selected and confirmed, the socio-demographic and clinical characteristics were collected. Single factor chi-square test and multi-factor unconditional logistic regression analysis were used to analyze the influencing factors of severe SILI. From 1391 reported cases, 1211 met SILI diagnostic criteria, of which 157 were severe SILI and 964 were general SILI. Univariate analysis showed that age, drug combination, statin category were the influencing factors of severe SILI (p<0.1). Multivariate logistic analysis showed that drug combination and statin category were the influencing factors of severe SILI (p<0.05). Atorvastatin caused the most serious SILI, and its risk is 1.77 times higher than rosuvastatin. The serious SILI risk of drug combination was 2.08 times higher than statin alone. The patient with these factors should be monitored intensively during clinical treatment, to ensure their medication safety.

8.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 73-80, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38430039

ABSTRACT

We aimed to investigate the cardiomyocyte-protective effects of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on ischemia/reperfusion (I/R)-injured rats and to explore the mechanisms. Cardiomyocytes were divided into control group, ischemia/reperfusion group (I/R group), ischemia/reperfusion+exosome group (I/R+Exo group) or ischemia/reperfusion+exosomes transfected with miR-101a-3p inhibitor group (I/R+Exo inhibitor group). MiR-101a-3p levels were lower in I/R and I/R+Exo inhibitor groups than in control and I/R+Exo groups. Apoptosis rate and cleaved caspase 3 expression were higher in I/R and I/R+Exo inhibitor groups. The levels of superoxide dismutase (SOD) in cardiomyocytes of I/R group and I/R+Exo inhibitor group were lower than those of control group and I/R+Exo group, and the levels of malondialdehyde (MDA) and the relative production of oxygen species clusters (ROS) in cardiomyocytes of I/R group and I/R+Exo inhibitor group were higher than those of control group and I/R+Exo group. The levels of interleukin-10 (IL-10), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and nuclear factor κB (NF-κB) were higher in the I/R group and the I/R +Exo inhibitor group than in the control group and the I/R+Exo group. Bioinformatics analysis suggested that Pik3c3 is the most promising gene involved in miR-101a-3p-mediated apoptosis in cardiomyocytes, and in vitro experiments confirmed that low expression of miR-101a-3p significantly up-regulated the mRNA and protein expression levels of Pik3c3. BMSCs-derived exosomes have a protective effect on cardiomyocytes from I/R-injured rats, and the mechanism may be related to the inhibition of oxidative stress and inflammatory responses in cardiomyocytes by exosome-delivered miR-101a-3p.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Reperfusion Injury , Rats , Animals , Myocytes, Cardiac/metabolism , Exosomes/metabolism , Reperfusion Injury/metabolism , Apoptosis , Hypoxia , Interleukin-6/metabolism , MicroRNAs/metabolism , Ischemia , Mesenchymal Stem Cells/metabolism
9.
BMC Cardiovasc Disord ; 24(1): 95, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331757

ABSTRACT

BACKGROUND: Red cell distribution width to albumin ratio (RAR) has been demonstrated to be associated with the risk of cardiovascular diseases. However, it is still unknown whether the RAR affects atrial fibrillation (AF). Therefore, this study aimed to investigate the association between RAR and AF in subjects hospitalized with coronary angiography. METHODS: A total of 2436 participants were retrospectively included. Red cell distribution width, albumin and other data were collected. AF was confirmed using 12-lead electrocardiogram (ECG) or 24-h Holter. All participants were divided into four groups according to the RAR values by quartile (Q1, Q2, Q3, Q4). Univariate and multivariate logistic regression were performed to examine the correlation between RAR and AF. RESULTS: Among the 2436 participants, 227 (9.3%) AF cases were observed. The RDW and RAR were significantly higher in AF group than in non-AF group (all P < 0.001). Univariate logistic regression showed an positive association between RAR and AF (P < 0.001). In multivariate logistic regression, RAR was found to be an independent risk factor of AF after adjusting for confounding factors (OR:2.015, 95%CI:1.315-3.089, P = 0.001). CONCLUSIONS: The present study indicated that elevated RAR level was independently correlated with increased risk of AF in subjects hospitalized with coronary angiography.


Subject(s)
Atrial Fibrillation , Erythrocyte Indices , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Retrospective Studies , Coronary Angiography/adverse effects , Risk Factors
10.
Lipids Health Dis ; 23(1): 51, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368320

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is widespread in the treatment of ischemic heart disease, and its treatment options are currently limited. Adiponectin (APN) is an adipocytokine with cardioprotective properties; however, the mechanisms of APN in MIRI are unclear. Therefore, based on preclinical (animal model) evidence, the cardioprotective effects of APN and the underlying mechanisms were explored. METHODS: The literature was searched for the protective effect of APN on MIRI in six databases until 16 November 2023, and data were extracted according to selection criteria. The outcomes were the size of the myocardial necrosis area and hemodynamics. Markers of oxidation, apoptosis, and inflammation were secondary outcome indicators. The quality evaluation was performed using the animal study evaluation scale recommended by the Systematic Review Center for Laboratory animal Experimentation statement. Stata/MP 14.0 software was used for the summary analysis. RESULTS: In total, 20 papers with 426 animals were included in this study. The pooled analysis revealed that APN significantly reduced myocardial infarct size [weighted mean difference (WMD) = 16.67 (95% confidence interval (CI) = 13.18 to 20.16, P < 0.001)] and improved hemodynamics compared to the MIRI group [Left ventricular end-diastolic pressure: WMD = 5.96 (95% CI = 4.23 to 7.70, P < 0.001); + dP/dtmax: WMD = 1393.59 (95% CI = 972.57 to 1814.60, P < 0.001); -dP/dtmax: WMD = 850.06 (95% CI = 541.22 to 1158.90, P < 0.001); Left ventricular ejection fraction: WMD = 9.96 (95% CI = 7.29 to 12.63, P < 0.001)]. Apoptosis indicators [caspase-3: standardized mean difference (SMD) = 3.86 (95% CI = 2.97 to 4.76, P < 0.001); TUNEL-positive cells: WMD = 13.10 (95% CI = 8.15 to 18.05, P < 0.001)], inflammatory factor levels [TNF-α: SMD = 4.23 (95% CI = 2.48 to 5.98, P < 0.001)], oxidative stress indicators [Superoxide production: SMD = 4.53 (95% CI = 2.39 to 6.67, P < 0.001)], and lactate dehydrogenase levels [SMD = 2.82 (95% CI = 1.60 to 4.04, P < 0.001)] were significantly reduced. However, the superoxide dismutase content was significantly increased [SMD = 1.91 (95% CI = 1.17 to 2.65, P < 0.001)]. CONCLUSION: APN protects against MIRI via anti-inflammatory, antiapoptotic, and antioxidant effects, and this effect is achieved by activating different signaling pathways.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Rats, Sprague-Dawley , Adiponectin/genetics , Signal Transduction , Apoptosis
11.
Nano Lett ; 23(8): 3614-3622, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37017682

ABSTRACT

Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.

12.
Angew Chem Int Ed Engl ; : e202405949, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871648

ABSTRACT

Layer-by-layer (LbL) deposition of active layers in organic solar cells (OSCs) offers immense potential for optimizing performance through precise tailoring of each layer. However, achieving high-performance LbL OSCs with distinct solid additives in each layer remains challenging. In this study, we explore a novel approach that strategically incorporates different solid additives into specific layers of LbL devices. To this end, we introduce FeCl3 into the lower donor (D18) layer as a p-type dopant to enhance hole concentration and mobility. Concurrently, we incorporate the wide-bandgap conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) into the upper acceptor (L8-BO) layer to improve the morphology and prolong exciton lifetime. Unlike previous studies, our approach combines these two strategies to achieve higher and more balanced electron and hole mobility without affecting device open-circuit voltage, while also suppressing charge recombination. Consequently, the power conversion efficiency (PCE) of the D18+FeCl3/L8-BO device increases to 18.12%, while the D18/L8-BO+PFO device attains a PCE of 18.79%. These values represent substantial improvements over the control device's PCE of 17.59%. Notably, when both FeCl3 and PFO are incorporated, the D18+FeCl3/L8-BO+PFO device achieves a remarkable PCE of 19.17%. In summary, our research results demonstrate the effectiveness of the layered solid additive strategy in improving OSC performance.

13.
Mol Cancer ; 22(1): 199, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062470

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most threatening tumors in the world, and chemotherapy remains dominant in the treatment of metastatic CRC (mCRC) patients. The purpose of this study was to develop a biomarker panel to predict the response of the first line chemotherapy in mCRC patients. METHODS: Totally 190 mCRC patients treated with FOLFOX or XEOLX chemotherapy in 3 different institutions were included. We extracted the plasma extracellular vesicle (EV) RNA, performed RNA sequencing, constructed a model and generated a signature through shrinking the number of variables by the random forest algorithm and the least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort (n = 80). We validated it in an internal validation cohort (n = 62) and a prospective external validation cohort (n = 48). RESULTS: We established a signature consisted of 22 EV RNAs which could identify responders, and the area under the receiver operating characteristic curve (AUC) values was 0.986, 0.821, and 0.816 in the training, internal validation, and external validation cohort respectively. The signature could also identify the progression-free survival (PFS) and overall survival (OS). Besides, we constructed a 7-gene signature which could predict tumor response to first-line oxaliplatin-containing chemotherapy and simultaneously resistance to second-line irinotecan-containing chemotherapy. CONCLUSIONS: The study was first to develop a signature of EV-derived RNAs to predict the response of the first line chemotherapy in mCRC with high accuracy using a non-invasive approach, indicating that the signature could help to select the optimal regimen for mCRC patients.


Subject(s)
Cell-Free Nucleic Acids , Colonic Neoplasms , Colorectal Neoplasms , Extracellular Vesicles , Rectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Bevacizumab/therapeutic use , Prospective Studies , Cell-Free Nucleic Acids/genetics , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , RNA , Liquid Biopsy , Extracellular Vesicles/genetics
14.
J Hepatol ; 78(3): 627-642, 2023 03.
Article in English | MEDLINE | ID: mdl-36462680

ABSTRACT

BACKGROUND & AIMS: Alterations of multiple metabolites characterize distinct features of metabolic reprograming in hepatocellular carcinoma (HCC). However, the role of most metabolites, including propionyl-CoA (Pro-CoA), in metabolic reprogramming and hepatocarcinogenesis remains elusive. In this study, we aimed to dissect how Pro-CoA metabolism affects these processes. METHODS: TCGA data and HCC samples were used to analyze ALDH6A1-mediated Pro-CoA metabolism and its correlation with HCC. Multiple metabolites were assayed by targeted mass spectrometry. The role of ALDH6A1-generated Pro-CoA in HCC was evaluated in HCC cell lines as well as xenograft nude mouse models and primary liver cancer mouse models. Non-targeted metabolomic and targeted energy metabolomic analyses, as well as multiple biochemical assays, were performed. RESULTS: Decreases in Pro-CoA and its derivative propionyl-L-carnitine due to ALDH6A1 downregulation were tightly associated with HCC. Functionally, ALDH6A1-mediated Pro-CoA metabolism suppressed HCC proliferation in vitro and impaired hepatocarcinogenesis in mice. The aldehyde dehydrogenase activity was indispensable for this function of ALDH6A1, while Pro-CoA carboxylases antagonized ALDH6A1 function by eliminating Pro-CoA. Mechanistically, ALDH6A1 caused a signature enrichment of central carbon metabolism in cancer and impaired energy metabolism: ALDH6A1-generated Pro-CoA suppressed citrate synthase activity, which subsequently reduced tricarboxylic acid cycle flux, impaired mitochondrial respiration and membrane potential, and decreased ATP production. Moreover, Pro-CoA metabolism generated 2-methylcitric acid, which mimicked the inhibitory effect of Pro-CoA on citrate synthase and dampened mitochondrial respiration and HCC proliferation. CONCLUSIONS: The decline of ALDH6A1-mediated Pro-CoA metabolism contributes to metabolic remodeling and facilitates hepatocarcinogenesis. Pro-CoA, propionyl-L-carnitine and 2-methylcitric acid may serve as novel metabolic biomarkers for the diagnosis and treatment of HCC. Pro-CoA metabolism may provide potential targets for development of novel strategies against HCC. IMPACT AND IMPLICATIONS: Our study presents new insights on the role of propionyl-CoA metabolism in metabolic reprogramming and hepatocarcinogenesis. This work has uncovered potential diagnostic and predictive biomarkers, which could be used by physicians to improve clinical practice and may also serve as targets for the development of therapeutic strategies against HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Citrate (si)-Synthase , Carnitine/metabolism , Carnitine/pharmacology
15.
Clin Immunol ; 256: 109774, 2023 11.
Article in English | MEDLINE | ID: mdl-37774907

ABSTRACT

Tumour-derived exosomes (TDEs) play an important role in tumourigenesis and progression by regulating components in the tumour microenvironment (TME), however, the role of TDE-related immune genes in hepatocellular carcinoma is not fully known. We systematically analysed TDE genes from ExoCarta and immune genes from Immport,Machine learning ultimately identified eight TDE-related prognostic immune genes and used them as the basis for constructing a risk model, which was constructed to better predict patients with hepatocellular carcinoma (HCC) compared with published prognostic models. There were significant differences between the high and low risk groups in terms of biological functioning. Low-risk group were more sensitive to immunotherapy, the sensitivity to oxaliplatin and cisplatin differed between the high- and low-risk groups, and knockout of the core gene RAC1 limited the malignant biological behaviour of hepatocellular carcinoma cells. In conclusion, TIRGs are effective in predicting the prognosis of patients with hepatocellular carcinoma and provide a new perspective on immunotherapy and chemotherapy for patients.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Exosomes/genetics , Liver Neoplasms/genetics , Cell Line , Cell Transformation, Neoplastic , Tumor Microenvironment/genetics , Prognosis
16.
Anal Chem ; 95(5): 2848-2856, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36700797

ABSTRACT

For the precise visualization of GPCR, subtype selectivity of turn-on fluorescent ligands is of major relevance. Although there are many thriving ß-adrenergic receptors (ß-ARs) probes, none of them are selective to the ß3-subtype, which severely limits the development of ß3-AR investigations. Using a polyethylene glycol (PEG) chain to conjugate the Py-5 fluorophore with mirabegron, we present here a highly selective fluorescent ligand, H2, for ß3-AR. It was established by the radioligand and NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding experiments that molecule H2 has a substantially higher affinity for ß3-AR than the other two subtypes (1/3, 45-fold; 2/3, 16-fold). More crucially, when molecule H2 was incubated with ß3-AR, the turn-on fluorescent signals could be quickly released. The subsequent investigations, which included cell imaging, tissue imaging, and flow-cytometry analysis, proved that molecule H2 may make it possible to quickly and accurately fluorescently identify ß3-AR at different levels. We offer a prospective fluorescent turn-on ligand with exceptional selectivity for ß3-AR as a result of our combined efforts.


Subject(s)
Adrenergic beta-Agonists , Receptors, Adrenergic, beta , Ligands , Prospective Studies , Receptors, Adrenergic, beta/chemistry , Receptors, Adrenergic, beta/metabolism
17.
Cancer Cell Int ; 23(1): 7, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36647100

ABSTRACT

BACKGROUND: Multiple molecular subtypes with distinct clinical outcomes in pancreatic adenocarcinoma (PAAD) have been identified in recent years. Cuproptosis is a new form of cell death that likely involved in tumor progression. However, the cuproptosis-related molecular subtypes as well as its mediated tumor microenvironment (TME) cell infiltration characteristics largely remain unclear. METHODS: Expression profiles of 10 cuproptosis-related genes (CRGs) and their association with patient survival, TME, cancer stemness and drug resistance were studied in 33 cancer types using the TCGA pan-cancer data. Using 437 PAAD samples from five cohorts (TCGA-PAAD cohort and four GEO cohorts), we explored the molecular subtypes mediated by CRGs, along with the associated TME cell infiltration. Unsupervised methods were utilized to perform cuproptosis subtype clustering. The cuproptosis score was constructed using the COX regression model with least absolute shrinkage and selection operator regression (LASSO) algorithm to quantify the cuproptosis characteristics of a single tumor. RESULTS: The expression of 10 CRGs varies in different cancer types with striking inter- and intra- cancer heterogeneity. We integrated the genomic profiling of the CRGs and identified three distinct cuproptosis subtypes, and found that multi-layer CRG alterations were correlated with patient prognosis and TME cell infiltration characteristics. In addition, a cuproptosis score signature was constructed to predict prognosis, and its clinical impacts were characterized in the TCGA-PAAD cohort. The cuproptosis signature was significantly associated with prognosis, tumor subtypes, CD8 T-cell infiltration, response to immune checkpoint inhibitors (ICIs) and chemotherapeutic drug sensitivity. Furthermore, the expression patterns of CRGs in pancreatic cancer cells and normal controls were validated, which was almost consistent with the results from the public database. The expression level and prognostic predictive capability of DLAT were verified in 97 PAAD patients from our patient cohort. CONCLUSIONS: These findings may help understand the roles of CRGs in PAAD and the molecular characterization of cuproptosis subtypes. In addition, the cuproptosis score could serve as a promising biomarker for predicting prognosis and response to immunotherapy in PAAD patients.

18.
Brain Behav Immun ; 111: 76-89, 2023 07.
Article in English | MEDLINE | ID: mdl-37011865

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS: A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS: Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (ß: 0.156; 95% CI: 0.888 âˆ¼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: ß: 0.288; 95% CI: 0.420 âˆ¼ 4.899, p = 0.020; age ≥ 48 months: ß: 0.458; 95% CI: 0.694 âˆ¼ 9.352, p = 0.024), as well as in boys (ß: 0.174; 95% CI: 0.834 âˆ¼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS: Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αßT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.


Subject(s)
Autism Spectrum Disorder , Male , Female , Humans , Child , Child, Preschool , Surveys and Questionnaires , Cytokines
19.
Langmuir ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36625757

ABSTRACT

Transition metal phosphides with excellent performance are one of the effective alternatives to noble metal catalysts in overall water splitting. In this paper, the Fe-NiCoP-MoO3 composite was prepared by a facile synthesis as the bifunctional electrocatalyst. Fe-NiCoP-MoO3 achieves an operating current density of 10 mA/cm2 at a low overpotential of 65 mV for hydrogen evolution reaction and drives an operating current density of 50 mA/cm2 at only 293 mV for oxygen evolution reaction. Significantly, Fe-NiCoP-MoO3 was employed as the anode and cathode for overall water splitting, which only requires a cell voltage of 1.586 V to reach 10 mA/cm2 as well as shows excellent stability. The electrocatalytic activity of Fe-NiCoP-MoO3 exceeds most of the recently reported typical bifunctional electrocatalysts. This may be due to the coupling effect between the polymetallic phosphides. In addition, heterogeneous catalysts generally expose more active sites than homogeneous catalysts. In addition, replacing MoO3 with WO3 and VO3 can also improve the performance of Fe-NiCoP. This work provides an idea for the modification of phosphides.

20.
J Endovasc Ther ; : 15266028231208638, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906607

ABSTRACT

INTRODUCTION: One of the important advantages of the distal transradial access (dTRA) is the significant reduction in the incidence of radial artery occlusion (RAO). There are few reports on the influencing factors for distal radial artery occlusion (dRAO) after cardiovascular interventions via the dTRA. METHODS: This retrospective analysis included the clinical data of patients who underwent a cardiovascular intervention via the dTRA. The dRAO was evaluated by ultrasound within 24 hours after the procedure. Multivariate logistic analysis was used to explore the influencing factors for dRAO. RESULTS: The incidence of dRAO was 3.5% (28/805) at 24 hours follow-up after the procedure. In the comparison between the 2 groups, the preoperative distal radial artery (DRA) internal diameter in the dRAO group was significantly smaller than that in the non-dRAO group (p=0.001). The prevalence of DRA inner diameter/sheath outer diameter <1 was significantly higher in the dRAO group than in the non-dRAO group (p=0.013). The number of puncture attempts was significantly greater in the dRAO group than in the non-dRAO group (p=0.007). Multivariate logistic analysis showed that DRA inner diameter/sheath outer diameter <1 was an independent risk factor for dRAO (OR=4.827, 95% CI=1.087-21.441, p=0.039). CONCLUSIONS: The incidence of dRAO 24 hours after cardiovascular intervention via the dTRA was 3.5%, and a DRA inner diameter/sheath outer diameter <1 was an independent risk factor for dRAO. Preoperative ultrasound assessment of vessel inner diameter and selection of a sheath with a smaller outer diameter may reduce the risk of dRAO. CLINICAL IMPACT: The incidence of distal radial artery occlusion after cardiovascular intervention was 3.5%. The distal radial artery inner diameter/sheath outer diameter <1 was an independent risk factor for distal radial artery occlusion. Preoperative ultrasound assessment of vessel inner diameter and selection of a sheath with a smaller outer diameter may reduce the risk of distal radial artery occlusion. The number of puncture attempts and compression time were not related to distal radial artery occlusion.

SELECTION OF CITATIONS
SEARCH DETAIL