Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell Mol Neurobiol ; 34(3): 351-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24343377

ABSTRACT

The striatum plays a fundamental role in sensorimotor and cognitive functions of the body, and different sub-regions control different physiological functions. The striatal interneurons play important roles in the striatal function, yet their specific functions are not clearly elucidated so far. The present study aimed to investigate the morphological properties of the GABAergic interneurons expressing neuropeptide Y (NPY), calretinin (Cr), and parvalbumin (Parv) as well as the cholinergic interneurons expressing choline acetyltransferase (ChAT) in the striatal dorsolateral (DL) and ventromedial (VM) regions of rats using immunohistochemistry and Western blot. The present results showed that the somatic size of Cr+ was the smallest, while ChAT+ was the largest among the four types of interneurons. There was no regional difference in neuronal somatic size of all types of interneurons. Cr+ and Parv+ neurons were differentially distributed in the striatum. Moreover, Parv+ had the longest primary dendrites in the DL region, while NPY+ had the longest ones in the VM region of striatum. But there was regional difference in the length of primary dendrites of Parv. The numbers of primary dendrites of Parv+ were the largest in both DL and VM regions of striatum. Both Cr+ and Parv+ primary dendrites displayed regional difference in the striatum. Western blot further confirmed the regional differences in the protein expression level of Cr and Parv. Hence, the present study indicates that GABAergic and cholinergic interneurons might be involved in different physiological functions based on their morphological and distributional diversity in different regions of the rat striatum.


Subject(s)
Cholinergic Neurons/metabolism , Corpus Striatum/cytology , Corpus Striatum/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley
2.
Neurodegener Dis ; 14(3): 139-50, 2014.
Article in English | MEDLINE | ID: mdl-25342207

ABSTRACT

BACKGROUND: Melatonin has shown a protective effect against various oxidative damages in the nervous system. Our previous studies have also confirmed its effect on behavioral dysfunction of experimental rats and injury of striatal interneurons induced by 3-nitropropionic acid. The present study aimed to further determine the effect of melatonin on the injury of striatal projection neurons induced by 3-nitropropionic acid. METHODS: Classic histology, immunohistochemistry, Western blotting and immunoelectron microscopy were applied in this study. RESULTS: The results were as follows: (1) in the striatum, 3-nitropropionic acid induced a clear lesion area with a transition zone around it, in which both D1+ and D2+ fibers were decreased significantly. However, in the group with melatonin treatment, the striatal lesion area was smaller than in the 3-nitropropionic acid group and the loss of D1+ and D2+ fibers was less pronounced than in the 3-nitropropionic acid group. (2) Histochemical results showed that the dendritic spine density of striatal projection neurons was decreased more seriously after 3-nitropropionic acid treatment, whereas the loss of dendritic spines was less marked in the melatonin-treated group than in the 3- nitropropionic acid group. Immunoelectron microscopy showed that the density of D1+ and D2+ dendrites and spines was significantly decreased in the 3-nitropropionic acid group, and the loss of D1+ and D2+ spines as well as D2+ dendrites was significantly reversed by melatonin administration. (3) Western blotting showed that the expression level of projection neuron protein markers decreased more significantly in the 3-nitropropionic acid group than in the control group and increased significantly in the melatonin-treated group. CONCLUSIONS: The present results suggest that 3-nitropropionic acid induces serious injury of striatal projection neurons and that melatonin effectively protects against this pathological damage.


Subject(s)
Corpus Striatum/drug effects , Melatonin/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Nitro Compounds/toxicity , Propionates/toxicity , Animals , Blotting, Western , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Dendritic Spines/drug effects , Dendritic Spines/pathology , Dendritic Spines/physiology , Immunohistochemistry , Male , Microscopy, Immunoelectron , Neurons/pathology , Neurons/physiology , Rats, Sprague-Dawley
3.
Front Oncol ; 13: 1099360, 2023.
Article in English | MEDLINE | ID: mdl-37056330

ABSTRACT

Background: Gastric cancer with synchronous distant metastases indicates a dismal prognosis. The success in survival improvement mainly relies on our ability to predict the potential benefit of a therapy. Our objective is to develop an artificial intelligence annotated clinical-pathologic risk model to predict its outcomes. Methods: In participants (n=47553) with gastric cancer of the surveillance, epidemiology, and end results program, we selected patients with distant metastases at first diagnosis, complete clinical-pathologic data and follow-up information. Patients were randomly divided into the training and test cohort at 7:3 ratio. 93 patients with advanced gastric cancer from six other cancer centers were collected as the external validation cohort. Multivariable analysis was used to identify the prognosis-related clinical-pathologic features. Then a survival prediction model was established and validated. Importantly, we provided explanations to the prediction with artificial intelligence SHAP (Shapley additive explanations) method. We also provide novel insights into treatment options. Results: Data from a total 2549 patients were included in model development and internal test (median age, 61 years [range, 53-69 years]; 1725 [67.7%] male). Data from an additional 93 patients were collected as the external validation cohort (median age, 59 years [range, 48-66 years]; 51 [54.8%] male). The clinical-pathologic model achieved a consistently high accuracy for predicting prognosis in the training (C-index: 0.705 [range, 0.690-0.720]), test (C-index: 0.737 [range, 0.717-0.757]), and external validation (C-index: 0.694 [range, 0.562-0.826]) cohorts. Shapley values indicated that undergoing surgery, chemotherapy, young, absence of lung metastases and well differentiated were the top 5 contributors to the high likelihood of survival. A combination of surgery and chemotherapy had the greatest benefit. However, aggressive treatment did not equate to a survival benefit. SHAP dependence plots demonstrated insightful nonlinear interactive associations among predictors in survival benefit prediction. For example, patients who were elderly, or poor differentiated, or presence of lung or bone metastases had a worse prognosis if they undergo surgery or chemotherapy, while patients with metastases to liver alone seemed to gain benefit from surgery and chemotherapy. Conclusion: In this large multicenter cohort study, we developed an artificial intelligence annotated clinical-pathologic risk model to predict outcomes of advanced gastric cancer. It could be used to discuss treatment options.

4.
Parasitol Res ; 111(4): 1547-57, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22777701

ABSTRACT

Angiostrongylus cantonensis is a neurotrophic and pulmonary parasite which causes severe neuropathological damages by invading and developing in the central nervous system (CNS). Nonpermissive host with A. cantonensis infection appeared to have more serious neurologic symptoms, and there is still not much knowledge about the host-parasite interrelationship in different hosts. We investigated and compared the larval size, recovery rate, distribution, and the severity of pathologic injuries in the CNS of both permissive host (e.g., rats) and nonpermissive hosts (e.g., mice). In present study, mice infected with A. cantonensis showed higher worm recovery rate in late-stage infection and smaller size of intracranial larvae as compared to the infected rats. Intracranial larvae mainly aggregated on cerebral surface of infected rats but on surface of cerebellum and brainstem in mice. Hemorrhage and tissue edema on brain surface caused by worm migration appeared earlier and severer in infected mice than in rats. Neuropathological examination revealed that injuries induced by A. cantonensis in brain parenchyma included hemorrhage, vascular dilatation, focal necrosis with neuronal loss, and infiltration of inflammatory cells. In the comparison of these pathological changes in rats and mice, infected mice suffered more serious injuries and provoked more intense inflammatory response as compared to infected rats. All these morphological evidences indicate that larval development was retardant in the CNS of nonpermissive host, and nonpermissive host experienced more serious pathological injuries than permissive host. It implies that the difference in innate immune response to parasite infection attribute to host specificity.


Subject(s)
Angiostrongylus cantonensis/pathogenicity , Strongylida Infections/pathology , Animals , Brain/parasitology , Brain/pathology , Disease Models, Animal , Host-Parasite Interactions , Male , Mice , Parasite Load , Rats , Rats, Sprague-Dawley , Strongylida Infections/parasitology
5.
Lab Chip ; 7(2): 239-48, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17268627

ABSTRACT

We present a prototype microfluidic device developed for the continuous dielectrophoretic (DEP) fractionation and purification of sample suspensions of biological cells. The device integrates three fully functional and distinct units consisting of an injector, a fractionation region, and two outlets. In the sheath and sample injection ports, the cell sample are hydrodynamically focused into a stream of controlled width; in the DEP fractionation region, a specially shaped nonuniform (isomotive) electric field is synthesized and employed to facilitate the separation, and the sorted cells are then delivered to two sample collection ports. The microfluidic behavior of the injector region was simulated and then experimentally verified. The operation and performance of the device was evaluated using yeast cells as model biological particles. Issues relating to the fabrication and operation of the device are discussed in detail. Such a device takes a significant step towards an integrated lab-on-a-chip device, which could interface/integrate to a number of other on-chip components for the device to undertake the whole laboratory procedure.


Subject(s)
Cell Separation/methods , Electrochemistry/methods , Electrophoresis/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Yeasts/cytology , Electrodes , Electrophoresis/instrumentation , Electrophoresis, Microchip , Equipment Design , Microchemistry , Microelectrodes , Models, Chemical , Models, Statistical
6.
PLoS One ; 11(9): e0162969, 2016.
Article in English | MEDLINE | ID: mdl-27658248

ABSTRACT

Interneurons are involved in the physiological function and the pathomechanism of the spinal cord. Present study aimed to examine and compare the characteristics of Cr+, Calb+ and Parv+ interneurons in morphology and distribution by using immunhistochemical and Western blot techniques. Results showed that 1) Cr-Calb presented a higher co-existence rate than that of Cr-Parv, and both of them were higher in the ventral horn than in the dosal horn; 2) Cr+, Calb+ and Parv+ neurons distributing zonally in the superficial dosal horn were small-sized. Parv+ neuronswere the largest, and Cr+ and Calb+ neurons were higher density among them. In the deep dorsal horn, Parv+ neurons were mainly located in nucleus thoracicus and the remaining scatteredly distributed. Cr+ neuronal size was the largest, and Calb+ neurons were the least among three interneuron types; 3) Cr+, Calb+ and Parv+ neurons of ventral horns displayed polygonal, round and fusiform, and Cr+ and Parv+ neurons were mainly distributed in the deep layer, but Calb+ neurons mainly in the superficial layer. Cr+ neurons were the largest, and distributed more in ventral horns than in dorsal horns; 4) in the dorsal horn of lumbar cords, Calb protein levels was the highest, but Parv protein level in ventral horns was the highest among the three protein types. Present results suggested that the morphological characteristics of three interneuron types imply their physiological function and pathomechanism relevance.

7.
J Mol Neurosci ; 60(2): 267-75, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27501707

ABSTRACT

Oxidative stress is closely involved in neurodegenerative diseases. The present study aimed to examine the effect of anti-oxidant DHM (dihydromyricetin) on 3NP (3-nitropropionic acid) -induced behavioral deficits of experimental rats and striatal histopathological injury by using behavioral, imaging, biochemistry, histochemistry and molecular biology technologies. The experimental results showed that both motor dysfunctions and learning and memory impairments induced by 3NP were significantly reduced after DHM treatment. 3NP-induced striatal metabolic abnormality was also remarkably improved by DHM treatment, showed as the increased glucose metabolism in PET/CT scan, decreased MDA (malondialdehyde) and increased SOD (superoxide dismutase) activity in enzyme histochemical staining. In addition, the cell apoptosis was evidently detected in the striatum of the 3NP group, while in the 3NP + DHM group, the number of apoptotic cells was remarkably reduced. 3NP treatment obviously induced down-regulation of Bcl-2, and up-regulations of Bax and Cleaved Caspase-3, while these changes were significantly reversed by DHM treatment. The present results suggested that DHM showed its protective effect by anti-oxidant and anti-apoptosis mechanisms.


Subject(s)
Corpus Striatum/drug effects , Flavonols/therapeutic use , Locomotion , Maze Learning , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Apoptosis , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Flavonols/pharmacology , Male , Malondialdehyde/metabolism , Neurodegenerative Diseases/etiology , Neuroprotective Agents/pharmacology , Nitro Compounds/toxicity , Oxidative Stress , Positron Emission Tomography Computed Tomography , Propionates/toxicity , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism
8.
Neural Regen Res ; 11(12): 1969-1975, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28197194

ABSTRACT

Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and µ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.

9.
J Microbiol Methods ; 58(3): 387-401, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15279943

ABSTRACT

The study of the dielectric properties of micrometer- or nanometer-scale particles is of particular interest in present-day applications of biomedical engineering. Electrokinetics utilises electrically energised microelectrode structures within microfluidic chambers to noninvasively probe the physiological structure of live cancer cells. A system is described that combines the three complementary techniques of dielectrophoresis (DEP), travelling wave dielectrophoresis (TWD) and electrorotation (ROT) for the first time on a single, integrated chip (3 x 6 mm). The chip employs planar microelectrode arrays fabricated on a silicon substrate to facilitate the synthesis of the various nonuniform electric fields required for the controlled manipulation, measurement and characterization of mammalian cells. A study of the dielectric properties of human malignant cells (Daudi and NCI-H929) was performed to demonstrate the potential and the versatility of the system in providing a fully programmable microsystem.


Subject(s)
Burkitt Lymphoma/pathology , Electrophoresis/methods , Multiple Myeloma/pathology , Cell Line, Tumor , Cell Size/physiology , Electrophoresis/instrumentation , Humans , Microelectrodes , Semiconductors
10.
Behav Brain Res ; 266: 37-45, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24613235

ABSTRACT

In this study, the motor deficit, cognition impairment and the vulnerability of different striatal interneurons to the 6-hydroxydopamine (6-OHDA)-induced excitotoxicity in unilateral medial forebrain bundle (MFB) lesion rats were analyzed by employing behavioral test, immunohistochemistry and Western blot methods. The apomorphine-induced rotation after MFB lesion was used as a valid criterion of motor deficit. The 6-OHDA damaged rats had limb rigidity with longer hang time compared to the controls in the grip strength test. Cognitive and mnemonic deficits of rats with unilateral MFB lesion were observed by the water maze task. The MFB lesion resulted in a significant loss of tyrosine hydroxylase (TH)+ cells in the contralateral striatum or substantia nigra. After dopaminergic depletion, the numbers of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ interneurons were notably reduced while these of neuropeptide Y (NPY)+ were markedly increased in the striatum. No noticeable change in the number of parvalbumin (Parv)+ interneurons was found in 6-OHDA rats. In addition, the fiber densities for each individual interneuron were increased after 6-OHDA treatment, especially for the fiber densities of Parv+ and Cr+ interneurons. The Western blot analysis further confirmed the results described above. In conclusion, the MFB lesion model is suitable to mimic Parkinson's disease (PD), and our results are helpful for further understanding the underlying mechanism and the specific functions of various striatal interneurons in the pathological process of PD.


Subject(s)
Adrenergic Agents/toxicity , Cognition Disorders/chemically induced , Corpus Striatum/pathology , Interneurons/classification , Interneurons/pathology , Medial Forebrain Bundle/injuries , Movement Disorders/etiology , Oxidopamine/toxicity , Animals , Apomorphine , Choline O-Acetyltransferase/metabolism , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Corpus Striatum/drug effects , Creatine/metabolism , Interneurons/metabolism , Male , Maze Learning/drug effects , Medial Forebrain Bundle/physiology , Movement Disorders/pathology , Muscle Strength/drug effects , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Rats , Rats, Sprague-Dawley , Spatial Behavior/drug effects , Tyrosine 3-Monooxygenase/metabolism
11.
J Histochem Cytochem ; 61(8): 591-605, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23686363

ABSTRACT

Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia.


Subject(s)
Corpus Striatum/drug effects , Melatonin/pharmacology , Neurons/drug effects , Animals , Behavior, Animal/drug effects , Corpus Striatum/cytology , Male , Rats , Rats, Sprague-Dawley
12.
Birth Defects Res B Dev Reprod Toxicol ; 80(5): 367-73, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17615575

ABSTRACT

BACKGROUND: Polynuclear aromatic hydrocarbons (PAH), benzo[alpha]pyrene (B[alpha]P) and 7,12-dimethylbenz[alpha]anthracene (DMBA) are toxic environmental agents distributed widely. The relative deleterious effects of these agents on growth and blood vasculature of fetus and placental tissues of the rat were studied. METHODS: Pregnant rats (Day 1 sperm positive) with implantation sites confirmed by laparotomy were treated intraperitoneally (i.p.) on Pregnancy Days 10, 12, and 14 with these agents dissolved in corn oil at cumulated total doses 50, 100, and 200 mg/kg/rat, and control with corn oil only (3-20 dams/group). Fetal growth, tissue hemorrhage, and placental pathology were evaluated by different parameters on Pregnancy Day (PD) 20 in treated and control rats. RESULTS: DMBA was relatively more deleterious compared to B[alpha]P indicated by increased lethality and progressive reduction of body weight of the mother with increasing doses. At 200 mg/kg/rat doses of these agents, maternal survival was 45% and 100% and body weight reduced 24% and 52% of controls, respectively. The fetal survival rates in live mothers were similar to that of controls. They induced marked fetal growth retardation and necrosis of placental tissues. B[alpha]P and DMBA produced significant toxicity to differentiating fetal blood vascular system as exhibited by rupture of blood vessels and hemorrhage, especially in the skin, cranial, and brain tissues. CONCLUSIONS: Maternal PAH exposure induced placental toxicity and associated adverse fetal development and hemorrhage in different parts of the fetal body, in particular, marked intradermal and cranial hemorrhage, showing that developing fetal blood vasculature is a target of PAH toxicity.


Subject(s)
Blood Vessels/abnormalities , Blood Vessels/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , 9,10-Dimethyl-1,2-benzanthracene/administration & dosage , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Animals , Benzo(a)pyrene/administration & dosage , Benzo(a)pyrene/toxicity , Blood Vessels/embryology , Blood Vessels/pathology , Female , Fetal Development/drug effects , Fetal Growth Retardation/chemically induced , Gestational Age , Hemorrhage/chemically induced , Placenta/drug effects , Placenta/pathology , Polycyclic Aromatic Hydrocarbons/administration & dosage , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL