Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.090
Filter
1.
Nature ; 609(7928): 685-688, 2022 09.
Article in English | MEDLINE | ID: mdl-36131036

ABSTRACT

Fast radio bursts (FRBs) are highly dispersed, millisecond-duration radio bursts1-3. Recent observations of a Galactic FRB4-8 suggest that at least some FRBs originate from magnetars, but the origin of cosmological FRBs is still not settled. Here we report the detection of 1,863 bursts in 82 h over 54 days from the repeating source FRB 20201124A (ref. 9). These observations show irregular short-time variation of the Faraday rotation measure (RM), which scrutinizes the density-weighted line-of-sight magnetic field strength, of individual bursts during the first 36 days, followed by a constant RM. We detected circular polarization in more than half of the burst sample, including one burst reaching a high fractional circular polarization of 75%. Oscillations in fractional linear and circular polarizations, as well as polarization angle as a function of wavelength, were detected. All of these features provide evidence for a complicated, dynamically evolving, magnetized immediate environment within about an astronomical unit (AU; Earth-Sun distance) of the source. Our optical observations of its Milky-Way-sized, metal-rich host galaxy10-12 show a barred spiral, with the FRB source residing in a low-stellar-density interarm region at an intermediate galactocentric distance. This environment is inconsistent with a young magnetar engine formed during an extreme explosion of a massive star that resulted in a long gamma-ray burst or superluminous supernova.

2.
Nature ; 597(7877): 489-492, 2021 09.
Article in English | MEDLINE | ID: mdl-34552254

ABSTRACT

Over the past decades, rest-frame ultraviolet (UV) observations have provided large samples of UV luminous galaxies at redshift (z) greater than 6 (refs. 1-3), during the so-called epoch of reionization. While a few of these UV-identified galaxies revealed substantial dust reservoirs4-7, very heavily dust-obscured sources at these early times have remained elusive. They are limited to a rare population of extreme starburst galaxies8-12 and companions of rare quasars13,14. These studies conclude that the contribution of dust-obscured galaxies to the cosmic star formation rate density at z > 6 is sub-dominant. Recent ALMA and Spitzer observations have identified a more abundant, less extreme population of obscured galaxies at z = 3-6 (refs. 15,16). However, this population has not been confirmed in the reionization epoch so far. Here, we report the discovery of two dust-obscured star-forming galaxies at z = 6.6813 ± 0.0005 and z = 7.3521 ± 0.0005. These objects are not detected in existing rest-frame UV data and were discovered only through their far-infrared [C II] lines and dust continuum emission as companions to typical UV-luminous galaxies at the same redshift. The two galaxies exhibit lower infrared luminosities and star-formation rates than extreme starbursts, in line with typical star-forming galaxies at z ≈ 7. This population of heavily dust-obscured galaxies appears to contribute 10-25% to the z > 6 cosmic star formation rate density.

3.
Nature ; 578(7796): 559-562, 2020 02.
Article in English | MEDLINE | ID: mdl-32103194

ABSTRACT

Strain-hardening (the increase of flow stress with plastic strain) is the most important phenomenon in the mechanical behaviour of engineering alloys because it ensures that flow is delocalized, enhances tensile ductility and inhibits catastrophic mechanical failure1,2. Metallic glasses (MGs) lack the crystallinity of conventional engineering alloys, and some of their properties-such as higher yield stress and elastic strain limit3-are greatly improved relative to their crystalline counterparts. MGs can have high fracture toughness and have the highest known 'damage tolerance' (defined as the product of yield stress and fracture toughness)4 among all structural materials. However, the use of MGs in structural applications is largely limited by the fact that they show strain-softening instead of strain-hardening; this leads to extreme localization of plastic flow in shear bands, and is associated with early catastrophic failure in tension. Although rejuvenation of an MG (raising its energy to values that are typical of glass formation at a higher cooling rate) lowers its yield stress, which might enable strain-hardening5, it is unclear whether sufficient rejuvenation can be achieved in bulk samples while retaining their glassy structure. Here we show that plastic deformation under triaxial compression at room temperature can rejuvenate bulk MG samples sufficiently to enable strain-hardening through a mechanism that has not been previously observed in the metallic state. This transformed behaviour suppresses shear-banding in bulk samples in normal uniaxial (tensile or compressive) tests, prevents catastrophic failure and leads to higher ultimate flow stress. The rejuvenated MGs are stable at room temperature and show exceptionally efficient strain-hardening, greatly increasing their potential use in structural applications.

4.
Nature ; 587(7832): 63-65, 2020 11.
Article in English | MEDLINE | ID: mdl-33149293

ABSTRACT

Fast radio bursts (FRBs) are millisecond-duration radio transients of unknown physical origin observed at extragalactic distances1-3. It has long been speculated that magnetars are the engine powering repeating bursts from FRB sources4-13, but no convincing evidence has been collected so far14. Recently, the Galactic magnetar SRG 1935+2154 entered an active phase by emitting intense soft γ-ray bursts15. One FRB-like event with two peaks (FRB 200428) and a luminosity slightly lower than the faintest extragalactic FRBs was detected from the source, in association with a soft γ-ray/hard-X-ray flare18-21. Here we report an eight-hour targeted radio observational campaign comprising four sessions and assisted by multi-wavelength (optical and hard-X-ray) data. During the third session, 29 soft-γ-ray repeater (SGR) bursts were detected in γ-ray energies. Throughout the observing period, we detected no single dispersed pulsed emission coincident with the arrivals of SGR bursts, but unfortunately we were not observing when the FRB was detected. The non-detection places a fluence upper limit that is eight orders of magnitude lower than the fluence of FRB 200428. Our results suggest that FRB-SGR burst associations are rare. FRBs may be highly relativistic and geometrically beamed, or FRB-like events associated with SGR bursts may have narrow spectra and characteristic frequencies outside the observed band. It is also possible that the physical conditions required to achieve coherent radiation in SGR bursts are difficult to satisfy, and that only under extreme conditions could an FRB be associated with an SGR burst.

5.
FASEB J ; 38(1): e23343, 2024 01.
Article in English | MEDLINE | ID: mdl-38071602

ABSTRACT

Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.


Subject(s)
Caveolin 1 , Prostatic Neoplasms , Male , Humans , Caveolin 1/genetics , Caveolin 1/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Mechanotransduction, Cellular , Mitochondria/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mitochondrial Proteins/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
6.
Nature ; 568(7751): 198-201, 2019 04.
Article in English | MEDLINE | ID: mdl-30971846

ABSTRACT

Mergers of neutron stars are known to be associated with short γ-ray bursts1-4. If the neutron-star equation of state is sufficiently stiff (that is, the pressure increases sharply as the density increases), at least some such mergers will leave behind a supramassive or even a stable neutron star that spins rapidly with a strong magnetic field5-8 (that is, a magnetar). Such a magnetar signature may have been observed in the form of the X-ray plateau that follows up to half of observed short γ-ray bursts9,10. However, it has been expected that some X-ray transients powered by binary neutron-star mergers may not be associated with a short γ-ray burst11,12. A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy, the redshift of which is unknown13. Its X-ray and host-galaxy properties allow several possible explanations including a short γ-ray burst seen off-axis, a low-luminosity γ-ray burst at high redshift, or a tidal disruption event involving an intermediate-mass black hole and a white dwarf13. Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z = 0.738 (ref. 14). The measured light curve is fully consistent with the X-ray transient being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy centre, as short γ-ray bursts often do15,16. The estimated event-rate density of similar X-ray transients, when corrected to the local value, is consistent with the event-rate density of binary neutron-star mergers that is robustly inferred from the detection of the gravitational-wave event GW170817.

7.
Biophys J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859585

ABSTRACT

Annexin A2 (A2)-induced microdomain formation is a key step in biological processes such as Ca2+-mediated exocytosis in neuroendocrine cells. In this work, a total of 15 coarse-grained molecular dynamics simulations were performed on vesicle models having a diameter of approximately 250 Å for 15 µs each using the Martini2 force field. Five simulations were performed in the presence of 10 A2, 5 in the presence of A2 but absence of PIP2, and 5 simulations in the absence of A2 but presence of PIP2. Consistent results were generated among the simulations. A2-induced PIP2 microdomain formation was observed and shown to occur in three phases: A2-vesicle association, localized A2-induced PIP2 clustering, and A2 aggregation driving PIP2 microdomain formation. The relationship between A2 aggregation and PIP2 microdomain formation was quantitatively described using a novel method which calculated the variance among protein and lipid positions via the Fréchet mean. A large reduction in PIP2 variance was observed in the presence of A2 but not in its absence. This reduction in PIP2 variance was proportional to the reduction observed in A2 variance and demonstrates that the observed PIP2 microdomain formation is dependent upon A2 aggregation. The three-phase model of A2-induced microdomain formation generated in this work will serve as a valuable guide for further experimental studies and the development of novel A2 inhibitors. No microdomain formation was observed in the absence of A2 and minimal A2-membrane interaction was observed in the absence of PIP2.

8.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37987758

ABSTRACT

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Subject(s)
Asthma , Glial Cell Line-Derived Neurotrophic Factor , Animals , Mice , Allergens , Collagen , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Methacholine Chloride/pharmacology , Mice, Inbred C57BL , Proto-Oncogene Proteins c-ret/metabolism
9.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L126-L139, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38771153

ABSTRACT

Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-ß-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-ß-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.


Subject(s)
Cellular Senescence , Endoplasmic Reticulum Stress , Fibroblasts , Lung , Humans , Cellular Senescence/drug effects , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Middle Aged , Lung/metabolism , Lung/pathology , Lung/drug effects , Adult , Aged , Male , Female , Extracellular Matrix/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Cells, Cultured , Cinnamates/pharmacology , Activating Transcription Factor 6/metabolism , Cell Proliferation/drug effects , Etoposide/pharmacology , Collagen Type I/metabolism , Aging/metabolism , Aging/pathology , Collagen Type I, alpha 1 Chain/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , eIF-2 Kinase/metabolism
10.
Ann Oncol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950679

ABSTRACT

BACKGROUND: PD-L1 tumor proportion score (TPS) and tumor mutational burden (TMB) are key predictive biomarkers for immune checkpoint inhibitors (ICI) efficacy in non-small cell lung cancer (NSCLC). Data on their variation across multiple samples are limited. METHODS: Patients with NSCLC and multiple PD-L1 TPS and/or TMB assessments were included. Clinicopathologic and genomic data were analyzed according to PD-L1 and TMB variation. RESULTS: In total, 402 PD-L1 sample pairs and 413 TMB sample pairs were included. Concordance between pairs was moderate for PD-L1 (ρ=0.53, P<0.0001) and high for TMB (ρ=0.80, P<0.0001). Shorter time between biopsies correlated with higher concordance in PD-L1, but not in TMB. Major increases (ΔTPS≥+50%) and decreases (ΔTPS≤-50%) in PD-L1 were observed in 9.7% and 8.0% of cases, respectively. PD-L1, but not TMB, decreased with intervening ICI (P=0.02). Acquired copy number loss of CD274, PDCD1LG2, and JAK2 were associated with major decrease in PD-L1 (q<0.05). Among patients with multiple PD-L1 assessments before ICI, cases where all samples had a PD-L1 ≥1%, compared to cases with at least one sample with PD-L1 <1% and another with PD-L1 ≥1%, achieved improved objective response rate and progression-free survival (PFS). Among patients with at least one PD-L1 <1% and one ≥1% before ICI, cases where the most proximal sample was PD-L1 ≥1% had longer median PFS compared to cases where the most proximal PD-L1 was <1%. Among patients with multiple TMB assessments before ICI, patients with a TMB ≥10 mut/Mb based on the most recent assessment, as compared to those with a TMB <10 mut/Mb, achieved improved PFS and OS to ICI; instead, no differences were observed when patients were categorized using the oldest TMB assessment. CONCLUSION: Despite intrapatient concordance in PD-L1 and TMB, variation in these biomarkers can influence ICI outcomes, warranting consideration for reassessment prior to ICI initiation when feasible.

11.
J Synchrotron Radiat ; 31(Pt 2): 363-377, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38386565

ABSTRACT

The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.

12.
Phys Rev Lett ; 132(22): 226701, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877911

ABSTRACT

The two-dimensional spin-1/2 kagome Heisenberg antiferromagnet is believed to host quantum spin liquid (QSL) states with no magnetic order, but its ground state remains largely elusive. An important outstanding question concerns the presence or absence of the 1/9 magnetization plateau, where exotic quantum states, including topological ones, are expected to emerge. Here we report the magnetization of a recently discovered kagome QSL candidate YCu_{3}(OH)_{6.5}Br_{2.5} up to 57 T. Above 50 T, a clear magnetization plateau at 1/3 of the saturation moment of Cu^{2+} ions is observed, supporting that this material provides an ideal platform for the kagome Heisenberg antiferromagnet. Remarkably, we found another magnetization plateau around 20 T, which is attributed to the 1/9 plateau. The temperature dependence of this plateau reveals the presence of the spin gap. The observation of 1/9 and 1/3 plateaus highlights the emergence of novel states in quantum spin systems.

13.
Phys Rev Lett ; 132(22): 225001, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877942

ABSTRACT

We report on an experimental observation of the streaking of betatron x rays in a curved laser wakefield accelerator. The streaking of the betatron x rays was realized by launching a laser pulse into a plasma with a transverse density gradient. By controlling the plasma density and the density gradient, we realized the steering of the laser driver, electron beam, and betatron x rays simultaneously. Moreover, we observed an energy-angle correlation of the streaked betatron x rays and utilized it in diagnosing the electron acceleration process in a single-shot mode. Our work could also find applications in advanced control of laser beam and particle propagation. More importantly, the angular streaked betatron x ray has an intrinsic spatiotemporal correlation, which makes it a promising tool for single-shot pump-probe applications.

14.
Phys Rev Lett ; 132(17): 171001, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728703

ABSTRACT

Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HPGe detector-based accelerated DM-electron analysis is realized. Utilizing the method, the first germanium based constraint on sub-GeV solar reflected DM-electron interaction is presented with the 205.4 kg·day dataset from the CDEX-10 experiment. In the heavy mediator scenario, our result excels in the mass range of 5-15 keV/c^{2}, achieving a 3 orders of magnitude improvement comparing with previous semiconductor experiments. In the light mediator scenario, the strongest laboratory constraint for DM lighter than 0.1 MeV/c^{2} is presented. The result proves the feasibility and demonstrates the vast potential of the VCA technique in future accelerated DM-electron analyses with semiconductor detectors.

15.
Phys Rev Lett ; 132(7): 072502, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427897

ABSTRACT

Using the fusion-evaporation reaction ^{106}Cd(^{58}Ni,4n)^{160}Os and the gas-filled recoil separator SHANS, two new isotopes _{76}^{160}Os and _{74}^{156}W have been identified. The α decay of ^{160}Os, measured with an α-particle energy of 7080(26) keV and a half-life of 201_{-37}^{+58} µs, is assigned to originate from the ground state. The daughter nucleus ^{156}W is a ß^{+} emitter with a half-life of 291_{-61}^{+86} ms. The newly measured α-decay data allow us to derive α-decay reduced widths (δ^{2}) for the N=84 isotones up to osmium (Z=76), which are found to decrease with increasing atomic number above Z=68. The reduction of δ^{2} is interpreted as evidence for the strengthening of the N=82 shell closure toward the proton drip line, supported by the increase of the neutron-shell gaps predicted in theoretical models.

16.
Scand J Rheumatol ; : 1-11, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899454

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease of the joints characterized by inflammation and cartilage degeneration. Zinc finger E-box binding homeobox 2 (ZEB2) contains various function domains that interact with multiple transcription factors involved in various cellular functions. However, the function of ZEB2 in OA has not been clearly illustrated. METHOD: Interleukin-1ß (IL-1ß) was used to establish an OA model in vitro. We quantified the ZEB2 expression in cartilage tissues from OA patients and IL-1ß-induced chondrocytes through reverse transcription-quantitative polymerase chain reaction and Western blot. We then used functional assays to explore the function of ZEB2 during OA progression. RESULTS: ZEB2 expression was increased in OA cartilage tissues and chondrocytes. The silencing of ZEB2 increased aggrecan and collagen II levels, and reduced the content of matrix metalloproteinase-3 (MMP-3), MMP-9, and MMP-13. ZEB2 knockdown inhibited the effects of IL-1ß on the production of nitric oxide and prostaglandin E2, and the expression of inducible nitric oxide synthase and cyclooxygenase-2. ZEB2 inhibition also suppressed the levels of IL-6 and tumour necrosis factor-α, and increased the IL-10 level in IL-1ß-treated cells. Mechanically, ZEB2 knockdown blocked the activation of the Wnt/ß-catenin pathway in chondrocytes. CONCLUSION: Knockdown of ZEB2 alleviated IL-1ß-induced cartilage degradation and the inflammatory response through the Wnt/ß-catenin pathway in chondrocytes.

17.
Ultrasound Obstet Gynecol ; 64(1): 87-96, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38243991

ABSTRACT

OBJECTIVE: Birth weight is a good predictor of fetal intrauterine growth and long-term health, and several studies have evaluated the relationship between metabolites and birth weight. The aim of this study was to investigate the association of cord blood metabolomics and lipidomics with birth weight, using a two-stage discovery and validation approach. METHODS: Firstly, a pseudotargeted metabolomics approach was applied to detect metabolites in 504 cord blood samples in the discovery set enrolled from the Wuhan Healthy Baby Cohort, China. Metabolome-wide association scan analysis and pathway enrichment were applied to identify metabolites and metabolic pathways that were significantly associated with birth weight adjusted for gestational age Z-score (BW Z-score). Logistic regression models were used to analyze the association of metabolites in the most significantly associated pathways with small-for-gestational age (SGA) at delivery and low birth weight (LBW). Subsequently, 350 cord blood samples in a validation cohort were subjected to targeted analysis to validate the metabolites identified by screening in the discovery cohort. RESULTS: In the discovery set, of 2566 metabolites detected, 2418 metabolites were retained for subsequent analysis after data preprocessing. Of these, 513 metabolites were significantly associated with BW Z-score (P-value adjusted for false discovery rate (PFDR) < 0.05), of which 298 Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated metabolites were included in the pathway analysis. The primary bile acid biosynthesis pathway was the most relevant metabolic pathway associated with BW Z-score. Elevated cord plasma primary bile acids were associated with lower BW Z-score and higher risk of SGA or LBW in the discovery and validation cohorts. In the validation set, a 2-fold increase in taurochenodeoxycholic acid (TCDCA) and in taurocholic acid (TCA) was associated with a decrease in BW Z-score (estimated ß coefficient, -0.10 (95% CI, -0.20 to 0.00) and -0.18 (95% CI, -0.31 to -0.04), respectively), after adjusting for covariates. In addition, a 2-fold increase in cord plasma TCDCA and of cord plasma TCA was associated with an increased risk of SGA (adjusted odds ratio (OR), 1.52 (95% CI, 1.00-2.30) and 1.77 (95% CI, 1.05-2.98), respectively). The adjusted OR for LBW, for a 2-fold increase in TCDCA and TCA concentration, were 2.39 (95% CI, 1.00-5.71) and 3.21 (95% CI, 0.96-10.74), respectively. CONCLUSIONS: These results indicate a significant association of elevated primary bile acids, particularly TCDCA and TCA, in cord blood with lower BW Z-score, as well as increased risk of SGA and LBW. Abnormalities of primary bile acid metabolism may play an important role in restricted fetal development. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Birth Weight , Fetal Blood , Infant, Small for Gestational Age , Lipidomics , Metabolomics , Humans , Fetal Blood/metabolism , Fetal Blood/chemistry , Female , Metabolomics/methods , Infant, Newborn , Pregnancy , Adult , China , Male , Cohort Studies , Gestational Age , Infant, Low Birth Weight , Metabolome
18.
Article in English | MEDLINE | ID: mdl-38642334

ABSTRACT

OBJECTIVES: To uncover the clinical course of fetal isolated non-immune mediated second-degree AVB and determine the factors associated with the spontaneous recovery for fetal non-immune second-degree atrioventricular block (AVB). METHODS: A total of 20 fetuses with isolated, non-immune mediated second-degree AVB were prospectively recruited between 2014 and 2022. These fetuses were divided into the spontaneous recovery group (n=12) and the non-spontaneous recovery group (n=8). Maternal and fetal basic characteristics, intrauterine and postnatal outcomes were compared between groups. RESULTS: Twelve fetuses restored 1:1 atrioventricular conduction in utero and did not recur during the postnatal follow-up period. The residual eight fetuses maintained as second-degree AVB and six of them were aborted due to parental request in utero. Of the two live children with second-degree AVB, one of them progressed to complete AVB at the latest follow up at the age of 34 months, but without any symptoms, heart enlargement or dysfunction. The residual one progressed to complete AVB and was finally diagnosed with type 2 long-QT syndrome. Fetuses in the spontaneous recovery group presented with earlier gestational age at diagnosis (20.0[17.0-26.0] vs. 24.5[18.0-35.0] weeks, p=0.004) and higher atrial rate (147[130-160] vs 138.00[125.00-149.00] bpm, p=0.006) in comparison with the non-spontaneous recovery group. A cut-off value of 22.5 weeks of gestational age and 144 bpm of atrial rate at diagnosis could predict the failure of spontaneous recovery, with sensitivities of 87.5%, 75%, and specificities of 92.0%, 87.5%, respectively. CONCLUSIONS: The outcome of fetal non-immune second-degree AVB was favorable. Earlier gestational age at diagnosis and higher atrial rate were related to spontaneous reversion for isolated non-immune-mediated second-degree AVB. However, prenatal gene test should be performed for those with persistent AVB to exclude the heritable disorders including LQTS. These findings may provide important references for clinical management and prenatal counseling. This article is protected by copyright. All rights reserved.

19.
Phys Chem Chem Phys ; 26(6): 4898-4908, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38258547

ABSTRACT

Ti2AlNb-based alloys are expected to be applied in the manufacture of parts of aeroengines to achieve the goal of increasing the thrust-to-weight ratio. However, the poor high temperature oxidation resistance of these alloys may hinder their applications. Alloying has been proven to be effective in improving oxidation resistance properties. However, the selection of alloying elements and their influence mechanisms are rarely studied. The TiO2/Ti2AlNb interface bonding interactions and the effects of alloying elements of Si, Sc, Y, Zr, Mo and Hf were investigated via first principles calculations. The separation energy and electronic structure were studied to explore the bonding interactions between the oxide scale and Ti2AlNb matrix. When Zr and Hf are used to replace Al, the bonding properties of the TiO2/Ti2AlNb interface are improved. The tensile and shear deformations of the interfacial zones are applied to study the influence of alloying elements on the TiO2 oxide spalling on Ti2AlNb. The tensile strength is increased by more than 2 GPa when Nb is substituted by the Sc, Zr and Hf elements. Therefore, Sc, Zr, and Hf are beneficial for inhibiting oxide spalling and will have great potential to improve the oxidation resistance properties.

20.
Phys Chem Chem Phys ; 26(11): 8695-8703, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-37947451

ABSTRACT

Zintl-phase materials have attracted significant research interest owing to the interplay of magnetism and strong spin-orbit coupling, providing a prominent material platform for axion electrodynamics. Here, we report the single-crystal growth, structure, magnetic and electrical/thermal transport properties of the antiferromagnet layer Zintl-phase compound ß-EuIn2As2. Importantly, the new layered structure of ß-EuIn2As2, in rhombohedral (R3̄m) symmetry, contains triangular layers of Eu2+ ions. The in-plane resistivity ρ(H, T) measurements reveal metal behavior with an antiferromagnetic (AFM) transition (TN ∼ 23.5 K), which is consistent with the heat capacity Cp(H, T) and magnetic susceptibility χ(H, T) measurements. Negative MR was observed in the temperature range from 2 K to 20 K with a maximum MR ratio of 0.06. Unique 4f7J = S = 7/2 Eu2+ spins were supposed magnetically order along the c-axis. The Seebeck coefficient shows a maximum thermopower |Smax| of about 40 µV K-1. The kink around 23 K in the Seebeck coefficient originates from the effect of the antiferromagnetic phase on the electron band structure, while the pronounced thermal conductivity peak at around 10 K is attributed to the phonon-phonon Umklapp scattering. The results suggest that the Eu2+ spin arrangement plays an important role in the magnetic, electrical, and thermal transport properties in ß-EuIn2As2, which might be helpful for future potential technical applications.

SELECTION OF CITATIONS
SEARCH DETAIL