Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
BMC Genomics ; 21(1): 607, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883208

ABSTRACT

BACKGROUND: Argeia pugettensis is an isopod species that parasitizes other crustaceans. Its huge native geographic range spans the Pacific from China to California, but molecular data are available only for a handful of specimens from North-American populations. We sequenced and characterised the complete mitogenome of a specimen collected in the Yellow Sea. RESULTS: It exhibited a barcode (cox1) similarity level of only 87-89% with North-American populations, which is unusually low for conspecifics. Its mitogenome is among the largest in isopods (≈16.5 Kbp), mostly due to a large duplicated palindromic genomic segment (2 Kbp) comprising three genes. However, it lost a segment comprising three genes, nad4L-trnP-nad6, and many genes exhibited highly divergent sequences in comparison to isopod orthologues, including numerous mutations, deletions and insertions. Phylogenetic and selection analyses corroborated that this is one of the handful of most rapidly evolving available isopod mitogenomes, and that it evolves under highly relaxed selection constraints (as opposed to positive selection). However, its nuclear 18S gene is highly conserved, which suggests that rapid evolution is limited to its mitochondrial genome. The cox1 sequence analysis indicates that elevated mitogenomic evolutionary rates are not shared by North-American conspecifics, which suggests a breakdown of cox1 barcoding in this species. CONCLUSIONS: A highly architecturally disrupted mitogenome and decoupling of mitochondrial and nuclear rates would normally be expected to have strong negative impacts on the fitness of the organism, so the existence of this lineage is a puzzling evolutionary question. Additional studies are needed to assess the phylogenetic breadth of this disrupted mitochondrial architecture and its impact on fitness.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Isopoda/genetics , Animals , Electron Transport Complex IV/genetics , Genetic Fitness , Genetic Speciation , Isopoda/classification , Phylogeny , Selection, Genetic
2.
Zootaxa ; 4851(1): zootaxa.4851.1.6, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-33056741

ABSTRACT

Three new species of the bopyrid genus Scyracepon Tattersall, 1905 are described from crabs collected on Pacific Islands: Scyracepon polynesiensis n. sp. from the Society Islands, S. pseudoliomerae n. sp. from the Mariana Islands, and S. biglobosus n. sp. from the Line Islands. The first two were found infesting Xanthias lamarckii and Pseudoliomera sp. (Xanthidae), a new host family for species of Scyracepon, and the last was found parasitizing Schizophrys aspera (Majidae). Scyracepon now includes 11 species, all but one known from single collections, infesting 12 host species in 9 brachyuran families. The discovery of three new species, each rare, suggests that crab parasites are undersampled, and further suggests that the low relative diversity of bopyrids known from brachyurans may partly reflect this undersampling. Keys to all species of Scyracepon and to all 31 genera of Keponinae are provided.


Subject(s)
Brachyura , Isopoda , Parasites , Animals , Pacific Islands
SELECTION OF CITATIONS
SEARCH DETAIL