Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Pathogens ; 13(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251374

ABSTRACT

Peroxiredoxins are abundant and ubiquitous proteins that participate in different cellular functions, such as oxidant detoxification, protein folding, and intracellular signaling. Under different cellular conditions, peroxiredoxins can be secreted by different parasites, promoting the induction of immune responses in hosts. In this work, we demonstrated that the cytosolic tryparedoxin peroxidase of Trypanosoma cruzi (cTXNPx) is secreted by epimastigotes and trypomastigotes associated with extracellular vesicles and also as a vesicle-free protein. By confocal microscopy, we show that cTXNPx can enter host cells by an active mechanism both through vesicles and as a recombinant protein. Transcriptomic analysis revealed that cTXNPx induces endoplasmic reticulum stress and interleukin-8 expression in epithelial cells. This analysis also suggested alterations in cholesterol metabolism in cTXNPx-treated cells, which was confirmed by immunofluorescence showing the accumulation of LDL and the induction of LDL receptors in both epithelial cells and macrophages. BrdU incorporation assays and qPCR showed that cTXNPx has a mitogenic, proliferative, and proinflammatory effect on these cells in a dose-dependent manner. Importantly, we also demonstrated that cTXNPx acts as a paracrine virulence factor, increasing the susceptibility to infection in cTXNPx-pretreated epithelial cells by approximately 40%. Although the results presented in this work are from in vitro studies and likely underestimate the complexity of parasite-host interactions, our work suggests a relevant role for this protein in establishing infection.

2.
Front Cell Infect Microbiol ; 13: 1187375, 2023.
Article in English | MEDLINE | ID: mdl-37424776

ABSTRACT

Introduction: Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results: Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions: Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.


Subject(s)
Chagas Disease , MicroRNAs , Trypanosoma cruzi , Animals , Humans , Trypanosoma cruzi/genetics , Chagas Disease/parasitology , Myocytes, Cardiac/metabolism , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Mammals/genetics
3.
Nat Microbiol ; 8(11): 2103-2114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828247

ABSTRACT

Trypanosomes are eukaryotic, unicellular parasites, such as Trypanosoma brucei, which causes sleeping sickness, and Trypanosoma cruzi, which causes Chagas disease. Genomes of these parasites comprise core regions and species-specific disruptive regions that encode multigene families of surface glycoproteins. Few transcriptional regulators have been identified in these parasites, and the role of spatial organization of the genome in gene expression is unclear. Here we mapped genome-wide chromatin interactions in T. cruzi using chromosome conformation capture (Hi-C), and we show that the core and disruptive regions form three-dimensional chromatin compartments named C and D. These chromatin compartments differ in levels of DNA methylation, nucleosome positioning and chromatin interactions, affecting genome expression dynamics. Our data reveal that the trypanosome genome is organized into chromatin-folding domains and transcription is affected by the local chromatin structure. We propose a model in which epigenetic mechanisms affect gene expression in trypanosomes.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma cruzi , Chromatin , Trypanosoma cruzi/genetics , Chromosomes , Trypanosoma brucei brucei/genetics , Membrane Glycoproteins/genetics
4.
Front Cell Infect Microbiol ; 11: 692134, 2021.
Article in English | MEDLINE | ID: mdl-34222052

ABSTRACT

Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Cell Communication , Host-Parasite Interactions , Humans , Signal Transduction , Transcriptome , Trypanosoma cruzi/genetics
5.
J Proteomics ; 223: 103804, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32422276

ABSTRACT

Cellular infection assays constitute essential tools to understand host-pathogen interactions, particularly for intracellular microorganisms that are produced in cell lines are needed to propagate the microorganism. In this work, we demonstrate that RNA derived from Vero cells is an important contaminant to consider in order to avoid false positive results in transcriptomic experiments. We study the cross-contamination on a Trypanosoma cruzi cell infection model, the etiological agent of Chagas disease. We implemented the most frequently used trypanosome-purification protocols and, for all of them, we detected RNAs derived from Vero cells in trypomastigote extracts. For some of the protocols we also detected Vero RNAs in infected human cells. We also found this type of contamination in microarray experiments of human samples infected with T. cruzi. Concerning Illumina RNA-Seq data, we found that the contamination with Vero cells is probably introducing spurious results. Finally, we recommend a protocol to purify trypomastigotes, which showed a high percentage of trypomastigote recovery and the absence of Vero contamination in infected human samples. Avoiding this type of contamination should be an important factor to consider during experimental design, in order to minimize false positive results in transcriptomic studies as well as RNA contamination in vaccine production. SIGNIFICANCE: Transcriptomic studies are widely used to understand host-pathogen interactions. When the pathogen is an intracellular microorganism, an additional mammalian cell system can be needed to propagate it. In this work we demonstrate that pathogens purified from infected monolayers can carry RNAs from these mammalian cells, and that this ambient RNA contamination is probably producing false positive results in subsequent transcriptomic studies performed with qRT-PCR, microarrays or Next Generation Sequencing.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Chlorocebus aethiops , Humans , RNA , Transcriptome , Trypanosoma cruzi/genetics , Vero Cells
6.
Gene ; 498(2): 147-54, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22387207

ABSTRACT

The surface of Trypanosoma cruzi is covered by a dense glycocalix which is characteristic of each stage of the life cycle. Its composition and complexity depend mainly on mucin-like proteins. A remarkable feature of O-glycan biosynthesis in trypanosomes is that it initiates with the addition of a GlcNAc instead of the GalNAc residue that is commonly used in vertebrate mucins. The fact that the interplay between trans-sialidase and mucin is crucial for pathogenesis, and both families have stage-specific members is also remarkable. Recently the enzyme that transfers the first GlcNAc from UDP-GlcNAc to a serine or threonine residue was kinetically characterized. The relevance of this enzyme is evidenced by its role as catalyzer of the first step in O-glycosylation. In this paper we describe how this gene is expressed differentially along the life cycle with a pattern that is very similar to that of trans-sialidases. Its localization was determined, showing that the protein predicted to be in the Golgi apparatus is also present in reservosomes. Finally our results indicate that this enzyme, when overexpressed, enhances T. cruzi infectivity.


Subject(s)
Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/genetics , 3' Untranslated Regions , Acetylglucosamine/metabolism , Animals , Chagas Disease/parasitology , Chlorocebus aethiops , Cloning, Molecular , Gene Expression Regulation, Enzymologic , Glycoproteins/genetics , Glycoproteins/metabolism , Golgi Apparatus/metabolism , Life Cycle Stages , Neuraminidase/genetics , Neuraminidase/metabolism , Rabbits , Trypanosoma cruzi/pathogenicity , Uridine Diphosphate/metabolism , Vero Cells/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL