Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Proc Natl Acad Sci U S A ; 120(35): e2310046120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603746

ABSTRACT

The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.


Subject(s)
Alphaproteobacteria , Climate , Atmosphere , Biomass , Methane
2.
Appl Environ Microbiol ; 87(3)2021 01 15.
Article in English | MEDLINE | ID: mdl-33218997

ABSTRACT

Methylotuvimicrobium buryatense 5GB1C, a fast-growing gammaproteobacterial methanotroph, is equipped with two glycolytic pathways, the Entner-Doudoroff (ED) pathway and the Embden-Meyerhof-Parnas (EMP) pathway. Metabolic flux analysis and 13C-labeling experiments have shown the EMP pathway is the principal glycolytic route in M. buryatense 5GB1C, while the ED pathway appears to be metabolically and energetically insignificant. However, it has not been possible to obtain a null mutant in the edd-eda genes encoding the two unique enzymatic reactions in the ED pathway, suggesting the ED pathway may be essential for M. buryatense 5GB1C growth. In this study, the inducible P BAD promoter was used to manipulate gene expression of edd-eda, and in addition, the expression of these two genes was separated from that of a downstream gltA gene. The resulting strain shows arabinose-dependent growth that correlates with ED pathway activity, with normal growth achieved in the presence of Ć¢ĀˆĀ¼0.1 g/liter arabinose. Flux balance analysis shows that M. buryatense 5GB1C with a strong ED pathway has a reduced energy budget, thereby limiting the mutant growth at a high concentration of arabinose. Collectively, our study demonstrates that the ED pathway is essential for M. buryatense 5GB1C. However, no known mechanism can directly explain the essentiality of the ED pathway, and thus, it may have a yet unknown regulatory role required for sustaining a healthy and functional metabolism in this bacterium.IMPORTANCE The gammaproteobacterial methanotrophs possess a unique central metabolic architecture where methane and other reduced C1 carbon sources are assimilated through the ribulose monophosphate cycle. Although efforts have been made to better understand methanotrophic metabolism in these bacteria via experimental and computational approaches, many questions remain unanswered. One of these is the essentiality of the ED pathway for M. buryatense 5GB1C, as current results appear contradictory. By creating a construct with edd-eda and gltA genes controlled by P BAD and P J23101 , respectively, we demonstrated the essentiality of the ED pathway for this obligate methanotroph. It is also demonstrated that these genetic tools are applicable to M. buryatense 5GB1C and that expression of the target genes can be tightly controlled across an extensive range. Our study adds to the expanding knowledge of methanotrophic metabolism and practical approaches to genetic manipulation for obligate methanotrophs.


Subject(s)
Methylococcaceae/metabolism , Glycolysis , Metabolic Networks and Pathways , Methylococcaceae/genetics , Mutation
3.
Proc Natl Acad Sci U S A ; 114(2): 358-363, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028242

ABSTRACT

The utilization of methane, a potent greenhouse gas, is an important component of local and global carbon cycles that is characterized by tight linkages between methane-utilizing (methanotrophic) and nonmethanotrophic bacteria. It has been suggested that the methanotroph sustains these nonmethanotrophs by cross-feeding, because subsequent products of the methane oxidation pathway, such as methanol, represent alternative carbon sources. We established cocultures in a microcosm model system to determine the mechanism and substrate that underlay the observed cross-feeding in the environment. Lanthanum, a rare earth element, was applied because of its increasing importance in methylotrophy. We used co-occurring strains isolated from Lake Washington sediment that are involved in methane utilization: a methanotroph and two nonmethanotrophic methylotrophs. Gene-expression profiles and mutant analyses suggest that methanol is the dominant carbon and energy source the methanotroph provides to support growth of the nonmethanotrophs. However, in the presence of the nonmethanotroph, gene expression of the dominant methanol dehydrogenase (MDH) shifts from the lanthanide-dependent MDH (XoxF)-type, to the calcium-dependent MDH (MxaF)-type. Correspondingly, methanol is released into the medium only when the methanotroph expresses the MxaF-type MDH. These results suggest a cross-feeding mechanism in which the nonmethanotrophic partner induces a change in expression of methanotroph MDHs, resulting in release of methanol for its growth. This partner-induced change in gene expression that benefits the partner is a paradigm for microbial interactions that cannot be observed in studies of pure cultures, underscoring the importance of synthetic microbial community approaches to understand environmental microbiomes.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Lanthanoid Series Elements/pharmacology , Methane/metabolism , Microbial Interactions/drug effects , Alcohol Oxidoreductases/metabolism , Bacteria/drug effects , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Methanol/metabolism , Oxidation-Reduction/drug effects , Washington
4.
J Bacteriol ; 201(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31085692

ABSTRACT

Several of the metabolic enzymes in methanotrophic bacteria rely on metals for both their expression and their catalysis. The MxaFI methanol dehydrogenase enzyme complex uses calcium as a cofactor to oxidize methanol, while the alternative methanol dehydrogenase XoxF uses lanthanide metals such as lanthanum and cerium for the same function. Lanthanide metals, abundant in the earth's crust, strongly repress the transcription of mxaF yet activate the transcription of xoxF This regulatory program, called the "lanthanide switch," is central to methylotrophic metabolism, but only some of its components are known. To uncover additional components of the lanthanide switch, we developed a chemical mutagenesis system in the type I gammaproteobacterial methanotroph "Methylotuvimicrobium buryatense" 5GB1C and designed a selection system for mutants unable to repress the mxaF promoter in the presence of lanthanum. Whole-genome resequencing for multiple lanthanide switch mutants identified several unique point mutations in a single gene encoding a TonB-dependent receptor, which we have named LanA. The LanA TonB-dependent receptor is absolutely required for the lanthanide switch and controls the expression of a small set of genes. While mutation of the lanA gene does not affect the amount of cell-associated lanthanum, it is essential for growth in the absence of the MxaF methanol dehydrogenase, suggesting that LanA is involved in lanthanum uptake to supply the XoxF methanol dehydrogenase with its critical metal ion cofactor. The discovery of this novel component of the lanthanide regulatory system highlights the complexity of this circuit and suggests that further components are likely involved.IMPORTANCE Lanthanide metals, or rare earth elements, are abundant in nature and used heavily in technological devices. Biological interactions with lanthanides are just beginning to be unraveled. Until very recently, microbial mechanisms of lanthanide metal interaction and uptake were unknown. The TonB-dependent receptor LanA is the first lanthanum receptor identified in a methanotroph. Sequence homology searches with known metal transporters and regulators could not be used to identify LanA or other lanthanide metal switch components, and this method for mutagenesis and selection was required to identify the receptor. This work advances the knowledge of microbe-metal interactions in environmental niches that impact atmospheric methane levels and are thus relevant to climate change.


Subject(s)
Bacterial Proteins/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Lanthanoid Series Elements/metabolism , Methane/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Biological Transport , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutagenesis
5.
Appl Environ Microbiol ; 85(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30709826

ABSTRACT

Multiple species of bacteria oxidize methane in the environment after it is produced by anaerobic ecosystems. These organisms provide reduced carbon substrates for species that cannot oxidize methane themselves, thereby serving a key role in these niches while also sequestering this potent greenhouse gas before it enters the atmosphere. Deciphering the molecular details of how methane-oxidizing bacteria interact in the environment enables us to understand an important aspect that shapes the structures and functions of these communities. Here we show that many members of the Methylomonas genus possess a LuxR-type acyl-homoserine lactone (acyl-HSL) receptor/transcription factor that is highly homologous to MbaR from the quorum-sensing (QS) system of Methylobacter tundripaludum, another methane oxidizer that has been isolated from the same environment. We reconstitute this detection system in Escherichia coli and use mutant and transcriptomic analysis to show that the receptor/transcription factor from Methylomonas sp. strain LW13 is active and alters LW13 gene expression in response to the acyl-HSL produced by M. tundripaludum These findings provide a molecular mechanism for how two species of bacteria that may compete for resources in the environment can interact in a specific manner through a chemical signal.IMPORTANCE Methanotrophs are bacteria that sequester methane, a significant greenhouse gas, and thereby perform an important ecosystem function. Understanding the mechanisms by which these organisms interact in the environment may ultimately allow us to manipulate and to optimize this activity. Here we show that members of a genus of methane-oxidizing bacteria can be influenced by a chemical signal produced by a possibly competing species. This provides insight into how gene expression can be controlled in these bacterial communities via an exogenous chemical signal.


Subject(s)
Methane/metabolism , Methylococcaceae/metabolism , Microbiota/physiology , Signal Transduction , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Bacterial Proteins/genetics , Binding Sites , Ecosystem , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genome, Bacterial , Methylococcaceae/genetics , Methylomonas/genetics , Methylomonas/metabolism , Microbiota/genetics , Oxidation-Reduction , Quorum Sensing/physiology , Repressor Proteins , Signal Transduction/genetics , Trans-Activators , Transcription Factors/genetics , Transcriptome
6.
J Am Chem Soc ; 140(6): 2002-2006, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29361220

ABSTRACT

Methane-oxidizing bacteria, aerobes that utilize methane as their sole carbon and energy source, are being increasingly studied for their environmentally significant ability to remove methane from the atmosphere. Their genomes indicate that they also have a robust and unusual secondary metabolism. Bioinformatic analysis of the Methylobacter tundripaludum genome identified biosynthetic gene clusters for several intriguing metabolites, and this report discloses the structural and genetic characterization of tundrenone, one of these metabolites. Tundrenone is a highly oxidized metabolite that incorporates both a modified bicyclic chorismate-derived fragment and a modified lipid tail bearing a Ɵ,ƎĀ³-unsaturated α-hydroxy ketone. Tundrenone has been genetically linked to its biosynthetic gene cluster, and quorum sensing activates its production. M. tundripaludum's genome and tundrenone's discovery support the idea that additional studies of methane-oxidizing bacteria will reveal new naturally occurring molecular scaffolds and the biosynthetic pathways that produce them.


Subject(s)
Biosynthetic Pathways , Hydroxy Acids/metabolism , Indenes/metabolism , Methylobacteriaceae/metabolism , Secondary Metabolism , Computational Biology , Genome, Bacterial , Hydroxy Acids/chemistry , Indenes/chemistry , Methane/metabolism , Methylobacteriaceae/genetics , Multigene Family
7.
Proc Natl Acad Sci U S A ; 112(12): 3704-9, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25775555

ABSTRACT

We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.


Subject(s)
Carbon/chemistry , Protein Engineering/methods , Proteins/chemistry , Biomass , Biosynthetic Pathways , Carbon Cycle , Catalysis , Cloning, Molecular , Escherichia coli/enzymology , Formaldehyde/chemistry , Formates/chemistry , Magnetic Resonance Spectroscopy , Polymerase Chain Reaction , Software , Thermodynamics
8.
J Bacteriol ; 199(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-27994019

ABSTRACT

Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum, a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N-3-hydroxydecanoyl-l-homoserine lactone (3-OH-C10-HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium.IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level.


Subject(s)
Methane/metabolism , Methylococcaceae/physiology , Quorum Sensing/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Kinetics , Oxidation-Reduction , Signal Transduction
9.
Metab Eng ; 42: 43-51, 2017 07.
Article in English | MEDLINE | ID: mdl-28552747

ABSTRACT

Methanotrophs are a group of bacteria that use methane as sole carbon and energy source. Type I methanotrophs are gamma-proteobacterial methanotrophs using the ribulose monophosphate cycle (RuMP) cycle for methane assimilation. In order to facilitate metabolic engineering in the industrially promising Type I methanotroph Methylomicrobium buryatense 5GB1, flux analysis of cellular metabolism is needed and 13C tracer analysis is a foundational tool for such work. This biological system has a single-carbon input and a special network topology that together pose challenges to the current well-established methodology for 13C tracer analysis using a multi-carbon input such as glucose, and to date, no 13C tracer analysis of flux in a Type I methanotroph has been reported. In this study, we showed that by monitoring labeling patterns of several key intermediate metabolites in core metabolism, it is possible to quantitate the relative flux ratios for important branch points, such as the malate node. In addition, it is possible to assess the operation of the TCA cycle, which has been thought to be incomplete in Type I methanotrophs. Surprisingly, our analysis provides direct evidence of a complete, oxidative TCA cycle operating in M. buryatense 5GB1 using methane as sole carbon and energy substrate, contributing about 45% of the total flux for de novo malate production. Combined with mutant analysis, this method was able to identify fumA (METBUDRAFT_1453/MBURv2__60244) as the primary fumarase involved in the oxidative TCA cycle, among 2 predicted fumarases, supported by 13C tracer analysis on both fumA and fumC single knockouts. Interrupting the oxidative TCA cycle leads to a severe growth defect, suggesting that the oxidative TCA cycle functions to not only provide precursors for de novo biomass synthesis, but also to provide reducing power to the system. This information provides new opportunities for metabolic engineering of M. buryatense for the production of industrially relevant products.


Subject(s)
Citric Acid Cycle/physiology , Methane/metabolism , Methylococcaceae/metabolism , Methylococcaceae/genetics
10.
J Bacteriol ; 198(8): 1317-25, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26858104

ABSTRACT

UNLABELLED: Many methylotrophic taxa harbor two distinct methanol dehydrogenase (MDH) systems for oxidizing methanol to formaldehyde: the well-studied calcium-dependent MxaFI type and the more recently discovered lanthanide-containing XoxF type. MxaFI has traditionally been accepted as the major functional MDH in bacteria that contain both enzymes. However, in this study, we present evidence that, in a type I methanotroph, Methylomicrobium buryatense, XoxF is likely the primary functional MDH in the environment. The addition of lanthanides increases xoxF expression and greatly reduces mxa expression, even under conditions in which calcium concentrations are almost 100-fold higher than lanthanide concentrations. Mutations in genes encoding the MDH enzymes validate our finding that XoxF is the major functional MDH, as XoxF mutants grow more poorly than MxaFI mutants under unfavorable culturing conditions. In addition, mutant and transcriptional analyses demonstrate that the lanthanide-dependent MDH switch operating in methanotrophs is mediated in part by the orphan response regulator MxaB, whose gene transcription is itself lanthanide responsive. IMPORTANCE: Aerobic methanotrophs, bacteria that oxidize methane for carbon and energy, require a methanol dehydrogenase enzyme to convert methanol into formaldehyde. The calcium-dependent enzyme MxaFI has been thought to primarily carry out methanol oxidation in methanotrophs. Recently, it was discovered that XoxF, a lanthanide-containing enzyme present in most methanotrophs, can also oxidize methanol. In a methanotroph with both MxaFI and XoxF, we demonstrate that lanthanides transcriptionally control genes encoding the two methanol dehydrogenases, in part by controlling expression of the response regulator MxaB. Lanthanides are abundant in the Earth's crust, and we demonstrate that micromolar amounts of lanthanides are sufficient to suppress MxaFI expression. Thus, we present evidence that XoxF acts as the predominant methanol dehydrogenase in a methanotroph.


Subject(s)
Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Methylococcaceae/enzymology , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Lanthanoid Series Elements/pharmacology , Methylococcaceae/drug effects , Methylococcaceae/genetics , Methylococcaceae/metabolism , Oxidation-Reduction
11.
Appl Environ Microbiol ; 82(7): 2062-2069, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26801578

ABSTRACT

Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobacter tundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains.


Subject(s)
Electroporation/methods , Genetic Techniques , Methane/metabolism , Methylococcaceae/genetics , Methylococcaceae/metabolism , Recombination, Genetic
12.
BMC Microbiol ; 16(1): 156, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27435978

ABSTRACT

BACKGROUND: Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. RESULTS: The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. CONCLUSIONS: In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.


Subject(s)
Biomass , Methylobacterium extorquens/growth & development , Methylobacterium extorquens/metabolism , Carbon Dioxide/metabolism , Cobalt/metabolism , Formates/metabolism , Genes, Bacterial , Ligases/metabolism , Malates/metabolism , Metabolic Flux Analysis , Methanol/metabolism , Methylobacterium extorquens/enzymology , Methylobacterium extorquens/genetics , Mutation , Oxidation-Reduction , Phenotype , Phosphoenolpyruvate Carboxylase/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Pyruvate Kinase/metabolism
13.
J Bacteriol ; 197(12): 2020-6, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25845846

ABSTRACT

UNLABELLED: During an environmental perturbation, the survival of a cell and its response to the perturbation depend on both the robustness and functionality of the metabolic network. The regulatory mechanisms that allow the facultative methylotrophic bacterium Methylobacterium extorquens AM1 to effect the metabolic transition from succinate to methanol growth are not well understood. Methenyl-dephosphotetrahydromethanopterin (methenyl-dH4MPT), an early intermediate during methanol metabolism, transiently accumulated 7- to 11-fold after addition of methanol to a succinate-limited culture. This accumulation partially inhibited the activity of the methylene-H4MPT dehydrogenase, MtdA, restricting carbon flux to the assimilation cycles. A strain overexpressing the gene (mch) encoding the enzyme that consumes methenyl-dH4MPT did not accumulate methenyl-dH4MPT and had a growth rate that was 2.7-fold lower than that of the wild type. This growth defect demonstrates the physiological relevance of this enzymatic regulatory mechanism during the acclimation period. Changes in metabolites and enzymatic activities were analyzed in the strain overexpressing mch. Under these conditions, the activity of the enzyme coupling formaldehyde with dH4MPT (Fae) remained constant, with concomitant formaldehyde accumulation. Release of methenyl-dH4MPT regulation did not affect the induction of the serine cycle enzyme activities immediately after methanol addition, but after 1 h, the activity of these enzymes decreased, likely due to the toxicity of formaldehyde accumulation. Our results support the hypothesis that in a changing environment, the transient accumulation of methenyl-dH4MPT and inhibition of MtdA activity are strategies that permit flexibility and acclimation of the metabolic network while preventing the accumulation of the toxic compound formaldehyde. IMPORTANCE: The identification and characterization of regulatory mechanisms for methylotrophy are in the early stages. We report a nontranscriptional regulatory mechanism that was found to operate as an immediate response for acclimation during changes in substrate availability. Methenyl-dH4MPT, an early intermediate during methanol oxidation, reversibly inhibits the methylene-H4MPT dehydrogenase, MtdA, when Methylobacterium extorquens is challenged to switch from succinate to methanol growth. Bypassing this regulatory mechanism causes formaldehyde to accumulate. Fae, the enzyme catalyzing the conversion of formaldehyde to methylene-dH4MPT, was also identified as another potential regulatory target using this strategy. The results herein further our understanding of the complex regulatory network in methylotrophy and will allow us to improve metabolic engineering strategies of methylotrophs for the production of value-added products.


Subject(s)
Methylobacterium extorquens/metabolism , Pterins/metabolism , Acclimatization , Formaldehyde , Methanol/metabolism , Serine , Succinates/metabolism
14.
J Bacteriol ; 197(4): 727-35, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25448820

ABSTRACT

The metabolism of one- and two-carbon compounds by the methylotrophic bacterium Methylobacterium extorquens AM1 involves high carbon flux through the ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway (EMC pathway). During growth on ethylamine, the EMC pathway operates as a linear pathway carrying the full assimilatory flux to produce glyoxylate, malate, and succinate. Assimilatory carbon enters the ethylmalonyl-CoA pathway directly as acetyl-CoA, bypassing pathways for formaldehyde oxidation/assimilation and the regulatory mechanisms controlling them, making ethylamine growth a useful condition to study the regulation of the EMC pathway. Wild-type M. extorquens cells were grown at steady state on a limiting concentration of succinate, and the growth substrate was then switched to ethylamine, a condition where the cell must make a sudden switch from utilizing the tricarboxylic acid (TCA) cycle to using the ethylmalonyl-CoA pathway for assimilation, which has been an effective strategy for identifying metabolic control points. A 9-h lag in growth was observed, during which butyryl-CoA, a degradation product of ethylmalonyl-CoA, accumulated, suggesting a metabolic imbalance. Ethylmalonyl-CoA mutase activity increased to a level sufficient for the observed growth rate at 9 h, which correlated with an upregulation of RNA transcripts for ecm and a decrease in the levels of ethylmalonyl-CoA. When the wild-type strain overexpressing ecm was tested with the same substrate switchover experiment, ethylmalonyl-CoA did not accumulate, growth resumed earlier, and, after a transient period of slow growth, the culture grew at a higher rate than that of the control. These findings demonstrate that ethylmalonyl-CoA mutase is a metabolic control point in the EMC pathway, expanding our understanding of its regulation.


Subject(s)
Acyl Coenzyme A/metabolism , Bacterial Proteins/metabolism , Intramolecular Transferases/metabolism , Methylobacterium extorquens/enzymology , Bacterial Proteins/genetics , Citric Acid Cycle , Ethylamines/metabolism , Glyoxylates/metabolism , Intramolecular Transferases/genetics , Metabolic Networks and Pathways , Methylobacterium extorquens/genetics , Methylobacterium extorquens/growth & development , Methylobacterium extorquens/metabolism
15.
Environ Microbiol ; 17(3): 547-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25683159

ABSTRACT

We sequenced the genomes of 19 methylotrophic isolates from Lake Washington, which belong to nine genera within eight families of the Alphaproteobacteria, two of the families being the newly proposed families. Comparative genomic analysis with a focus on methylotrophy metabolism classifies these strains into heterotrophic and obligately or facultatively autotrophic methylotrophs. The most persistent metabolic modules enabling methylotrophy within this group are the N-methylglutamate pathway, the two types of methanol dehydrogenase (MxaFI and XoxF), the tetrahydromethanopterin pathway for formaldehyde oxidation, the serine cycle and the ethylmalonyl-CoA pathway. At the same time, a great potential for metabolic flexibility within this group is uncovered, with different combinations of these modules present. Phylogenetic analysis of key methylotrophy functions reveals that the serine cycle must have evolved independently in at least four lineages of Alphaproteobacteria and that all methylotrophy modules seem to be prone to lateral transfers as well as deletions.


Subject(s)
Acyl Coenzyme A/metabolism , Alcohol Oxidoreductases/metabolism , Alphaproteobacteria/metabolism , Glutamates/metabolism , Lakes/microbiology , Serine/metabolism , Alcohol Oxidoreductases/genetics , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Base Sequence , Formaldehyde/metabolism , Genomics , Geologic Sediments/microbiology , Methyltransferases/metabolism , Phylogeny , Sequence Analysis, DNA , Washington
16.
Metab Eng ; 29: 142-152, 2015 May.
Article in English | MEDLINE | ID: mdl-25825038

ABSTRACT

Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems.


Subject(s)
Bacteria , Metabolic Engineering/methods , Methane/metabolism , Wastewater , Water Microbiology , Water Purification/methods , Bacteria/genetics , Bacteria/metabolism
17.
Appl Environ Microbiol ; 81(5): 1775-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25548049

ABSTRACT

Aerobic methanotrophs oxidize methane at ambient temperatures and pressures and are therefore attractive systems for methane-based bioconversions. In this work, we developed and validated genetic tools for Methylomicrobium buryatense, a haloalkaliphilic gammaproteobacterial (type I) methanotroph. M. buryatense was isolated directly on natural gas and grows robustly in pure culture with a 3-h doubling time, enabling rapid genetic manipulation compared to many other methanotrophic species. As a proof of concept, we used a sucrose counterselection system to eliminate glycogen production in M. buryatense by constructing unmarked deletions in two redundant glycogen synthase genes. We also selected for a more genetically tractable variant strain that can be conjugated with small incompatibility group P (IncP)-based broad-host-range vectors and determined that this capability is due to loss of the native plasmid. These tools make M. buryatense a promising model system for studying aerobic methanotroph physiology and enable metabolic engineering in this bacterium for industrial biocatalysis of methane.


Subject(s)
Genetics, Microbial/methods , Methylococcaceae/genetics , Molecular Biology/methods , Conjugation, Genetic , Gene Deletion , Gene Transfer, Horizontal , Genetic Vectors , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Methane/metabolism , Methylococcaceae/growth & development , Oxidation-Reduction , Plasmids
18.
Microb Cell Fact ; 14: 182, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26572866

ABSTRACT

BACKGROUND: Methane is a feedstock of interest for the future, both from natural gas and from renewable biogas sources. Methanotrophic bacteria have the potential to enable commercial methane bioconversion to value-added products such as fuels and chemicals. A strain of interest for such applications is Methylomicrobium buryatense 5GB1, due to its robust growth characteristics. However, to take advantage of the potential of this methanotroph, it is important to generate comprehensive bioreactor-based datasets for different growth conditions to compare bioprocess parameters. RESULTS: Datasets of growth parameters, gas utilization rates, and products (total biomass, extracted fatty acids, glycogen, excreted acids) were obtained for cultures of M. buryatense 5GB1 grown in continuous culture under methane limitation and O2 limitation conditions. Additionally, experiments were performed involving unrestricted batch growth conditions with both methane and methanol as substrate. All four growth conditions show significant differences. The most notable changes are the high glycogen content and high formate excretion for cells grown on methanol (batch), and high O2:CH4 utilization ratio for cells grown under methane limitation. CONCLUSIONS: The results presented here represent the most comprehensive published bioreactor datasets for a gamma-proteobacterial methanotroph. This information shows that metabolism by M. buryatense 5GB1 differs significantly for each of the four conditions tested. O2 limitation resulted in the lowest relative O2 demand and fed-batch growth on methane the highest. Future studies are needed to understand the metabolic basis of these differences. However, these results suggest that both batch and continuous culture conditions have specific advantages, depending on the product of interest.


Subject(s)
Methane/metabolism , Methanol/metabolism , Methylococcaceae/metabolism , Biomass , Bioreactors , Glycogen/metabolism , Methylococcaceae/growth & development , Oxygen/metabolism
19.
Microb Cell Fact ; 14: 188, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26607880

ABSTRACT

BACKGROUND: Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration. RESULTS: A stoichiometric flux balance model of Methylomicrobium buryatense strain 5G(B1) was constructed and used for evaluating metabolic engineering strategies for biofuels and chemical production with a methanotrophic bacterium as the catalytic platform. The initial metabolic reconstruction was based on whole-genome predictions. Each metabolic step was manually verified, gapfilled, and modified in accordance with genome-wide expression data. The final model incorporates a total of 841 reactions (in 167 metabolic pathways). Of these, up to 400 reactions were recruited to produce 118 intracellular metabolites. The flux balance simulations suggest that only the transfer of electrons from methanol oxidation to methane oxidation steps can support measured growth and methane/oxygen consumption parameters, while the scenario employing NADH as a possible source of electrons for particulate methane monooxygenase cannot. Direct coupling between methane oxidation and methanol oxidation accounts for most of the membrane-associated methane monooxygenase activity. However the best fit to experimental results is achieved only after assuming that the efficiency of direct coupling depends on growth conditions and additional NADH input (about 0.1-0.2 mol of incremental NADH per one mol of methane oxidized). The additional input is proposed to cover loss of electrons through inefficiency and to sustain methane oxidation at perturbations or support uphill electron transfer. Finally, the model was used for testing the carbon conversion efficiency of different pathways for C1-utilization, including different variants of the ribulose monophosphate pathway and the serine cycle. CONCLUSION: We demonstrate that the metabolic model can provide an effective tool for predicting metabolic parameters for different nutrients and genetic perturbations, and as such, should be valuable for metabolic engineering of the central metabolism of M. buryatense strains.


Subject(s)
Genome, Bacterial , Methane/metabolism , Methylococcaceae/genetics , Biofuels , Biomass , Catalysis , Metabolic Engineering , Methanol/metabolism , Methylococcaceae/metabolism , NAD/chemistry , NAD/metabolism , Oxidation-Reduction , Oxygenases/genetics , Oxygenases/metabolism
20.
Annu Rev Microbiol ; 63: 477-99, 2009.
Article in English | MEDLINE | ID: mdl-19514844

ABSTRACT

In the past few years, the field of methylotrophy has undergone a significant transformation in terms of discovery of novel types of methylotrophs, novel modes of methylotrophy, and novel metabolic pathways. This time has also been marked by the resolution of long-standing questions regarding methylotrophy and the challenge of long-standing dogmas. This chapter is not intended to provide a comprehensive review of metabolism of methylotrophic bacteria. Instead we focus on significant recent discoveries that are both refining and transforming the current understanding of methylotrophy as a metabolic phenomenon. We also review new directions in methylotroph ecology that improve our understanding of the role of methylotrophy in global biogeochemical processes, along with an outlook for the future challenges in the field.


Subject(s)
Bacteria/metabolism , Biodiversity , Methanol/metabolism , Bacteria/genetics , Metabolic Networks and Pathways/genetics
SELECTION OF CITATIONS
SEARCH DETAIL