Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Immunity ; 56(2): 289-306.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36750099

ABSTRACT

Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.


Subject(s)
Sarcoidosis , Transcriptome , Animals , Mice , Humans , Cytokines/metabolism , Granuloma , Gene Expression Profiling
2.
Am J Respir Crit Care Med ; 209(9): 1152-1164, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353578

ABSTRACT

Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.


Subject(s)
Granuloma , Lipid Metabolism , Macrophages , Sarcoidosis , Humans , Animals , Mice , Macrophages/metabolism , Sarcoidosis/metabolism , Granuloma/metabolism , Female , Male , Middle Aged , Adult , Disease Models, Animal
3.
Trends Immunol ; 41(4): 286-299, 2020 04.
Article in English | MEDLINE | ID: mdl-32122794

ABSTRACT

Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas: a compact collection of macrophages that have differentiated into epithelioid cells and which are associated with T helper (Th)1 and Th17 cells. Although no single causative factor has been shown to underlie sarcoidosis in humans, its etiology has been related to microbial, environmental, and genetic factors. We examine how these factors play a role in sarcoidosis pathogenesis. Specifically, we propose that dysfunction of mTOR, Rac1, and autophagy-related pathways not only hampers pathogen or nonorganic particle clearance but also participates in T cell and macrophage dysfunction, driving granuloma formation. This concept opens new avenues for potentially treating sarcoidosis and may serve as a blueprint for other granulomatous disorders.


Subject(s)
Autophagy , Sarcoidosis , TOR Serine-Threonine Kinases , rac1 GTP-Binding Protein , Autophagy/genetics , Humans , Macrophages/immunology , Macrophages/pathology , Sarcoidosis/genetics , Sarcoidosis/immunology , TOR Serine-Threonine Kinases/immunology , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , rac1 GTP-Binding Protein/immunology
4.
Haematologica ; 105(2): 375-386, 2020.
Article in English | MEDLINE | ID: mdl-31097632

ABSTRACT

RAS-signaling mutations induce the myelomonocytic differentiation and proliferation of hematopoietic stem and progenitor cells. Moreover, they are important players in the development of myeloid neoplasias. RAF kinase inhibitor protein (RKIP) is a negative regulator of RAS-signaling. As RKIP loss has recently been described in RAS-mutated myelomonocytic acute myeloid leukemia, we now aimed to analyze its role in myelomonocytic differentiation and RAS-driven leukemogenesis. Therefore, we initially analyzed RKIP expression during human and murine hematopoietic differentiation and observed that it is high in hematopoietic stem and progenitor cells and lymphoid cells but decreases in cells belonging to the myeloid lineage. By employing short hairpin RNA knockdown experiments in CD34+ umbilical cord blood cells and the undifferentiated acute myeloid leukemia cell line HL-60, we show that RKIP loss is indeed functionally involved in myelomonocytic lineage commitment and drives the myelomonocytic differentiation of hematopoietic stem and progenitor cells. These results could be confirmed in vivo, where Rkip deletion induced a myelomonocytic differentiation bias in mice by amplifying the effects of granulocyte macrophage-colony-stimulating factor. We further show that RKIP is of relevance for RAS-driven myelomonocytic leukemogenesis by demonstrating that Rkip deletion aggravates the development of a myeloproliferative disease in NrasG12D -mutated mice. Mechanistically, we demonstrate that RKIP loss increases the activity of the RAS-MAPK/ERK signaling module. Finally, we prove the clinical relevance of these findings by showing that RKIP loss is a frequent event in chronic myelomonocytic leukemia, and that it co-occurs with RAS-signaling mutations. Taken together, these data establish RKIP as novel player in RAS-driven myeloid leukemogenesis.


Subject(s)
Leukemia, Myeloid, Acute , Phosphatidylethanolamine Binding Protein , Animals , Cell Differentiation , Leukemia, Myeloid, Acute/genetics , Mice , Monocytes/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Phosphatidylethanolamine Binding Protein/metabolism , Signal Transduction
5.
J Allergy Clin Immunol ; 139(6): 1873-1884.e10, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27742396

ABSTRACT

BACKGROUND: Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE: Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS: In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS: Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-ß1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION: Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.


Subject(s)
Dendritic Cells/cytology , Kruppel-Like Transcription Factors/metabolism , Monocytes/cytology , Skin/cytology , Adult , Cell Differentiation/physiology , Cells, Cultured , Dendritic Cells/metabolism , Embryo, Mammalian , Fetal Blood/cytology , Humans , Inflammation/metabolism , Kruppel-Like Factor 4 , Monocytes/metabolism , Transforming Growth Factor beta1/pharmacology
6.
Stem Cells ; 32(12): 3232-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25100642

ABSTRACT

Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte-monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca(2+) entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation.


Subject(s)
Calcineurin/metabolism , Calcium/metabolism , Membrane Proteins/metabolism , Monocytes/metabolism , NFATC Transcription Factors/metabolism , Signal Transduction , Stem Cells/metabolism , Animals , Granulocytes/metabolism , Mice, Inbred C57BL , Myeloid Cells/metabolism , Signal Transduction/physiology
8.
ERJ Open Res ; 10(2)2024 Mar.
Article in English | MEDLINE | ID: mdl-38686182

ABSTRACT

Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered is "Micro- and macro-environments and respiratory health", which is followed by a summary of the "Scientific year in review" session. Next, recent advances in experimental methodologies and new technologies are discussed from the "Tissue modelling and remodelling" session and a summary provided of the translational science session, "What did you always want to know about omics analyses for clinical practice?", which was organised as part of the ERS Translational Science initiative's aims. The "Lost in translation: new insights into cell-to-cell crosstalk in lung disease" session highlighted how next-generation sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the "From the transcriptome landscape to innovative preclinical models in lung diseases" session, which links the transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected sessions and the high quality of the research discussed demonstrate the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.

9.
Am J Respir Cell Mol Biol ; 48(1): 135-44, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22652198

ABSTRACT

Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.


Subject(s)
Asthma/pathology , Asthma/physiopathology , Mucins/physiology , Muscle Proteins/physiology , Peptides/physiology , Actins/metabolism , Airway Resistance/drug effects , Animals , Annexin A5/metabolism , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/physiopathology , Disease Models, Animal , ErbB Receptors/metabolism , Female , Immunohistochemistry , Lung/drug effects , Lung/pathology , Lung/physiopathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Mucins/pharmacology , Muscle Proteins/pharmacology , Ovalbumin/immunology , Peptides/pharmacology , Recombinant Proteins/pharmacology , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , Transforming Growth Factor beta1/metabolism , Trefoil Factor-2
10.
J Am Heart Assoc ; 12(19): e030478, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37750561

ABSTRACT

Background Sarcoidosis is an inflammatory, granulomatous disease of unknown cause affecting multiple organs, including the heart. Untreated, unresolved granulomatous inflammation can lead to cardiac fibrosis, arrhythmias, and eventually heart failure. Here we characterize the cardiac phenotype of mice with chronic activation of mammalian target of rapamycin (mTOR) complex 1 signaling in myeloid cells known to cause spontaneous pulmonary sarcoid-like granulomas. Methods and Results The cardiac phenotype of mice with conditional deletion of the tuberous sclerosis 2 (TSC2) gene in CD11c+ cells (TSC2fl/flCD11c-Cre; termed TSC2KO) and controls (TSC2fl/fl) was determined by histological and immunological stains. Transthoracic echocardiography and invasive hemodynamic measurements were performed to assess myocardial function. TSC2KO animals were treated with either everolimus, an mTOR inhibitor, or Bay11-7082, a nuclear factor-kB inhibitor. Activation of mTOR signaling was evaluated on myocardial samples from sudden cardiac death victims with a postmortem diagnosis of cardiac sarcoidosis. Chronic activation of mTORC1 signaling in CD11c+ cells was sufficient to initiate progressive accumulation of granulomatous infiltrates in the heart, which was associated with increased fibrosis, impaired cardiac function, decreased plakoglobin expression, and abnormal connexin 43 distribution, a substrate for life-threatening arrhythmias. Mice treated with the mTOR inhibitor everolimus resolved granulomatous infiltrates, prevented fibrosis, and improved cardiac dysfunction. In line, activation of mTOR signaling in CD68+ macrophages was detected in the hearts of sudden cardiac death victims who suffered from cardiac sarcoidosis. Conclusions To our best knowledge this is the first animal model of cardiac sarcoidosis that recapitulates major pathological hallmarks of human disease. mTOR inhibition may be a therapeutic option for patients with cardiac sarcoidosis.


Subject(s)
Myocarditis , Sarcoidosis , Humans , Mice , Animals , Mechanistic Target of Rapamycin Complex 1 , Everolimus , Tumor Suppressor Proteins/genetics , Tuberous Sclerosis Complex 2 Protein , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Sarcoidosis/drug therapy , Disease Models, Animal , Death, Sudden, Cardiac , Fibrosis , Mammals/metabolism
11.
Sci Transl Med ; 15(713): eade2581, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37703351

ABSTRACT

Sarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease. Positive treatment outcomes were dependent on the effective enhancement of TBET ubiquitination within CD8+ T cells. Mechanistically, we identified a posttranslational modification pathway in which the E3 F-box protein S-phase kinase-associated protein 2 (SKP2) targets TBET for ubiquitination in T cells under normal conditions. However, this pathway was disrupted by aberrant pSHP2 signaling in CD8+ T cells from patients with progressive pulmonary sarcoidosis and end-stage disease. Ex vivo inhibition of pSHP2 in CD8+ T cells from patients with end-stage sarcoidosis enhanced TBET ubiquitination and suppressed IFN-γ and collagen synthesis. Therefore, these studies provided new mechanistic insights into the SHP2-dependent posttranslational regulation of TBET and identified SHP2 inhibition as a potential therapeutic intervention against severe sarcoidosis. Furthermore, these studies also suggest that the small-molecule SHP2 inhibitor SHP099 might be used as a therapeutic measure against human diseases linked to TBET or ubiquitination.


Subject(s)
CD8-Positive T-Lymphocytes , Sarcoidosis , Humans , Animals , Mice , Ubiquitination , Protein Processing, Post-Translational , Interferon-gamma
12.
J Asthma ; 48(7): 653-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21793772

ABSTRACT

BACKGROUND: Epithelial denudation and metaplasia are important in the pathogenesis of airway remodeling and asthma. Trefoil factor 2 (TFF2) is a member of a family of peptides involved in protection and healing of the gastrointestinal epithelium but which are also secreted in the airway mucosa. METHODS: We investigated the role of TFF2 in airway remodeling by histological and morphometric analysis of lung tissue from TFF2-deficient mice subjected to two relevant animal models of asthma: an ovalbumin model of allergic airways disease and an Aspergillus fumigatus antigen sensitization model. RESULTS: In the ovalbumin model TFF2-deficient mice had increased goblet cell hyperplasia, but not epithelial thickening compared to wild-type (WT) counterparts. In the Aspergillus model TFF2-deficient mice also had increased goblet cell hyperplasia, and epithelial thickness was also increased in the Aspergillus-sensitized mice compared to WT controls. TFF2 deficiency was also associated with increased subepithelial collagen layer thickness. DISCUSSION: The current study demonstrates a role of TFF2 in airway remodeling in mouse models of airway disease. Further studies into the mechanisms of action of TFF2 and its role in asthma are warranted.


Subject(s)
Airway Remodeling , Asthma/pathology , Asthma/physiopathology , Mucins/metabolism , Muscle Proteins/metabolism , Peptides/metabolism , Respiratory Mucosa/pathology , Animals , Disease Models, Animal , Mice , Trefoil Factor-2
13.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34515726

ABSTRACT

Löfgren's syndrome is an acute form of sarcoidosis that is characterized by the activation of CD4+ T helper cells. In this issue of JEM, Greaves et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210785) identified a peptide derived from an airborne mold species that stimulates T cells of Löfgren's syndrome patients in an HLA-DR3-restricted manner. An increased serum IgG antibody response to the full-length protein was also observed in those patients, indicating that the fungus Aspergillus nidulans might be the elusive microbial agent that drives acute sarcoidosis.


Subject(s)
Sarcoidosis , Humans , Syndrome
14.
Cell Rep ; 30(11): 3793-3805.e5, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187550

ABSTRACT

DC-SIGN+ monocyte-derived dendritic cells (mo-DCs) play important roles in bacterial infections and inflammatory diseases, but the factors regulating their differentiation and proinflammatory status remain poorly defined. Here, we identify a microRNA, miR-181a, and a molecular mechanism that simultaneously regulate the acquisition of DC-SIGN expression and the activation state of DC-SIGN+ mo-DCs. Specifically, we show that miR-181a promotes DC-SIGN expression during terminal mo-DC differentiation and limits its sensitivity and responsiveness to TLR triggering and CD40 ligation. Mechanistically, miR-181a sustains ERK-MAPK signaling in mo-DCs, thereby enabling the maintenance of high levels of DC-SIGN and a high activation threshold. Low miR-181a levels during mo-DC differentiation, induced by inflammatory signals, do not support the high phospho-ERK signal transduction required for DC-SIGNhi mo-DCs and lead to development of proinflammatory DC-SIGNlo/- mo-DCs. Collectively, our study demonstrates that high DC-SIGN expression levels and a high activation threshold in mo-DCs are linked and simultaneously maintained by miR-181a.


Subject(s)
Cell Adhesion Molecules/metabolism , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , MAP Kinase Signaling System , MicroRNAs/metabolism , Monocytes/metabolism , Receptors, Cell Surface/metabolism , Adult , Animals , Cell Differentiation , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Gene Knockdown Techniques , HEK293 Cells , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Middle Aged , THP-1 Cells , Toll-Like Receptor 4/metabolism
15.
BMC Med Genomics ; 11(1): 23, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29510755

ABSTRACT

BACKGROUND: Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS: From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS: We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS: Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.


Subject(s)
Exome Sequencing , Pedigree , Sarcoidosis/genetics , Base Sequence , Child , Female , Genetic Variation , Genome-Wide Association Study , Humans , Male
16.
EMBO Mol Med ; 4(4): 269-82, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22311511

ABSTRACT

Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system.


Subject(s)
Calcineurin/metabolism , Hematopoiesis , Myeloid Cells/cytology , NFATC Transcription Factors/metabolism , Signal Transduction , Animals , Cyclosporine/pharmacology , Dendritic Cells/cytology , Dendritic Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Immunosuppressive Agents/pharmacology , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , NFATC Transcription Factors/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL