Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Plant Microbe Interact ; 26(10): 1190-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23777433

ABSTRACT

Mitogen-activated protein kinases (MAPK) play crucial roles in plant immunity. We previously identified a citrus MAPK (CsMAPK1) as a differentially expressed protein in response to infection by Xanthomonas aurantifolii, a bacterium that causes citrus canker in Mexican lime but a hypersensitive reaction in sweet oranges. Here, we confirm that, in sweet orange, CsMAPK1 is rapidly and preferentially induced by X. aurantifolii relative to Xanthomonas citri. To investigate the role of CsMAPK1 in citrus canker resistance, we expressed CsMAPK1 in citrus plants under the control of the PR5 gene promoter, which is induced by Xanthomonas infection and wounding. Increased expression of CsMAPK1 correlated with a reduction in canker symptoms and a decrease in bacterial growth. Canker lesions in plants with higher CsMAPK1 levels were smaller and showed fewer signs of epidermal rupture. Transgenic plants also revealed higher transcript levels of defense-related genes and a significant accumulation of hydrogen peroxide in response to wounding or X. citri infection. Accordingly, nontransgenic sweet orange leaves accumulate both CsMAPK1 and hydrogen peroxide in response to X. aurantifolii but not X. citri infection. These data, thus, indicate that CsMAPK1 functions in the citrus canker defense response by inducing defense gene expression and reactive oxygen species accumulation during infection.


Subject(s)
Citrus aurantiifolia/immunology , Citrus sinensis/immunology , Mitogen-Activated Protein Kinases/genetics , Plant Diseases/immunology , Plant Immunity , Xanthomonas/physiology , Citrus aurantiifolia/genetics , Citrus aurantiifolia/growth & development , Citrus aurantiifolia/microbiology , Citrus sinensis/genetics , Citrus sinensis/growth & development , Citrus sinensis/microbiology , Gene Expression , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Epidermis , Plant Leaves , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Plant/genetics , Reactive Oxygen Species/metabolism , Xanthomonas/pathogenicity
2.
Sci Rep ; 9(1): 3901, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846791

ABSTRACT

Salicylic acid (SA) and its methyl ester, methyl salicylate (MeSA) are well known inducers of local and systemic plant defense responses, respectively. MeSA is a major mediator of systemic acquired resistance (SAR) and its conversion back into SA is thought to be required for SAR. In many plant species, conversion of MeSA into SA is mediated by MeSA esterases of the SABP2 family. Here we show that the Citrus sinensis SABP2 homologue protein CsMES1 catalyzes the hydrolysis of MeSA into SA. Molecular modeling studies suggest that CsMES1 shares the same structure and SA-binding mode with tobacco SABP2. However, an amino acid polymorphism in the active site of CsMES1-related proteins suggested an important role in enzyme regulation. We present evidence that the side chain of this polymorphic residue directly influences enzyme activity and SA binding affinity in CsMES proteins. We also show that SA and CsMES1 transcripts preferentially accumulate during the incompatible interaction between Xanthomonas aurantifolii pathotype C and sweet orange plants. Moreover, we demonstrate that SA and MeSA inhibited citrus canker caused by Xanthomonas citri, whereas an inhibitor of CsMES1 enhanced canker formation, suggesting that CsMES1 and SA play a role in the local defense against citrus canker bacteria.


Subject(s)
Citrus sinensis/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Salicylates/metabolism , Disease Resistance , Structure-Activity Relationship
3.
Mol Plant Pathol ; 20(8): 1105-1118, 2019 08.
Article in English | MEDLINE | ID: mdl-31115151

ABSTRACT

Poly(A) tail shortening is a critical step in messenger RNA (mRNA) decay and control of gene expression. The carbon catabolite repressor 4 (CCR4)-associated factor 1 (CAF1) component of the CCR4-NOT deadenylase complex plays an essential role in mRNA deadenylation in most eukaryotes. However, while CAF1 has been extensively investigated in yeast and animals, its role in plants remains largely unknown. Here, we show that the Citrus sinensis CAF1 (CsCAF1) is a magnesium-dependent deadenylase implicated in resistance against the citrus canker bacteria Xanthomonas citri. CsCAF1 interacted with proteins of the CCR4-NOT complex, including CsVIP2, a NOT2 homologue, translin-associated factor X (CsTRAX) and the poly(A)-binding proteins CsPABPN and CsPABPC. CsCAF1 also interacted with PthA4, the main X. citri effector required for citrus canker elicitation. We also present evidence suggesting that PthA4 inhibits CsCAF1 deadenylase activity in vitro and stabilizes the mRNA encoded by the citrus canker susceptibility gene CsLOB1, which is transcriptionally activated by PthA4 during canker formation. Moreover, we show that an inhibitor of CsCAF1 deadenylase activity significantly enhanced canker development, despite causing a reduction in PthA4-dependent CsLOB1 transcription. These results thus link CsCAF1 with canker development and PthA4-dependent transcription in citrus plants.


Subject(s)
Citrus sinensis/enzymology , Citrus sinensis/microbiology , Disease Resistance/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Ribonucleases/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Citrus sinensis/genetics , Citrus sinensis/immunology , Gene Expression Regulation, Plant/drug effects , Magnesium/pharmacology , Plant Diseases/genetics , Plant Proteins/genetics , Poly A/metabolism , Protein Binding/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , RNA Stability/drug effects , Transcription, Genetic/drug effects , Xanthomonas/drug effects , Xanthomonas/physiology
SELECTION OF CITATIONS
SEARCH DETAIL