Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nat Chem Biol ; 19(3): 334-345, 2023 03.
Article in English | MEDLINE | ID: mdl-36470996

ABSTRACT

Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing. Here we present the crystal structure of the hydrolase-only SpoT from Acinetobacter baumannii and uncover the mechanism of intramolecular regulation of 'long'-stringent factors. In contrast to ribosome-associated Rel/RelA that adopt an elongated structure, SpoT assumes a compact τ-shaped structure in which the regulatory domains wrap around a Core subdomain that controls the conformational state of the enzyme. The Core is key to the specialization of long RelA-SpoT homologs toward either synthesis or hydrolysis: the short and structured Core of SpoT stabilizes the τ-state priming the hydrolase domain for (p)ppGpp hydrolysis, whereas the longer, more dynamic Core domain of RelA destabilizes the τ-state priming the monofunctional RelA for efficient (p)ppGpp synthesis.


Subject(s)
Biological Evolution , Guanosine Pentaphosphate , Molecular Conformation , Hydrolases , Catalysis , Ligases/metabolism , Bacterial Proteins/genetics
2.
Genomics ; 114(1): 9-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34798282

ABSTRACT

Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.


Subject(s)
Genome, Mitochondrial , Plasmodiophorida , Genomics , Metagenomics , Plasmodiophorida/genetics
3.
Mol Plant Microbe Interact ; 35(11): 989-1005, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35816413

ABSTRACT

The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Beta vulgaris , Plant Viruses , Plasmodiophorida , RNA Viruses , Beta vulgaris/parasitology , RNA Viruses/physiology , Plant Diseases/genetics , Plant Viruses/physiology , Sugars
4.
Gut ; 68(7): 1180-1189, 2019 07.
Article in English | MEDLINE | ID: mdl-30171064

ABSTRACT

OBJECTIVE: Human gut microbiome studies are mainly bacteria- and archaea-oriented, overlooking the presence of single-cell eukaryotes such as Blastocystis, an enteric stramenopiles with worldwide distribution. Here, we surveyed the prevalence and subtype variation of Blastocystis in faecal samples collected as part of the Flemish Gut Flora Project (FGFP), a Western population cohort. We assessed potential links between Blastocystis subtypes and identified microbiota-host covariates and quantified microbiota differentiation relative to subtype abundances. DESIGN: We profiled stool samples from 616 healthy individuals from the FGFP cohort as well as 107 patients with IBD using amplicon sequencing targeting the V4 variable region of the 16S rRNA and 18S rRNA genes. We evaluated associations of Blastocystis, and their subtypes, with host parameters, diversity and composition of bacterial and archaeal communities. RESULTS: Blastocystis prevalence in the non-clinical population cohort was 30% compared with 4% among Flemish patients with IBD. Within the FGFP cohort, out of 69 previously identified gut microbiota covariates, only age was associated with Blastocystis subtype carrier status. In contrast, a strong association between microbiota community composition and Blastocystis subtypes was observed, with effect sizes larger than that of host covariates. Microbial richness and diversity were linked to both Blastocystis prevalence and subtype variation. All Blastocystis subtypes detected in this cohort were found to be less prevalent in Bacteroides enterotyped samples. Interestingly, Blastocystis subtypes 3 and 4 were inversely correlated with Akkermansia, suggesting differential associations of subtypes with host health. CONCLUSIONS: These results emphasise the role of Blastocystis as a common constituent of the healthy gut microbiota. We show its prevalence is reduced in patients with active IBD and demonstrate that subtype characterisation is essential for assessing the relationship between Blastocystis, microbiota profile and host health. These findings have direct clinical applications, especially in donor selection for faecal transplantation.


Subject(s)
Blastocystis/isolation & purification , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/microbiology , Adult , Aged , Belgium , Case-Control Studies , Cohort Studies , Feces/microbiology , Female , Humans , Male , Middle Aged , Prevalence
5.
Environ Microbiol ; 16(9): 2659-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24102695

ABSTRACT

Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.


Subject(s)
DNA, Ribosomal/genetics , Metagenome , Metagenomics/methods , Sequence Analysis, DNA/methods , Archaea/genetics , Bacteria/genetics , DNA Primers/genetics , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
6.
Viruses ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38400074

ABSTRACT

The second symposium of the Belgian Society for Viruses of Microbes (BSVoM) took place on 8 September 2023 at the University of Liège with 141 participants from 10 countries. The meeting program covered three thematic sessions opened by international keynote speakers: two sessions were devoted to "Fundamental research in phage ecology and biology" and the third one to the "Present and future applications of phages". During this one day symposium, four invited keynote lectures, nine selected talks and eight student pitches were given along with thirty presented posters. The president of the Belgian Society for Viruses of Microbes, Prof. Yves Briers, took advantage of this symposium to launch the Phage Valley concept that will put the spotlight on the exceptionally high density of researchers investigating viruses of microbes as well as the successful triple helix approach between academia, industry and government in Belgium.


Subject(s)
Bacteriophages , Humans , Belgium , Environment , Ecology , Students
7.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: mdl-37243298

ABSTRACT

The Belgian Society for Viruses of Microbes (BSVoM) was founded on 9 June 2022 to capture and enhance the collaborative spirit among the expanding community of microbial virus researchers in Belgium. The sixteen founders are affiliated to fourteen different research entities across academia, industry and government. Its inaugural symposium was held on 23 September 2022 in the Thermotechnical Institute at KU Leuven. The meeting program covered three thematic sessions launched by international keynote speakers: (1) virus-host interactions, (2) viral ecology, evolution and diversity and (3) present and future applications. During the one-day symposium, four invited keynote lectures, ten selected talks and eight student pitches were given along with 41 presented posters. The meeting hosted 155 participants from twelve countries.


Subject(s)
Host Microbial Interactions , Viruses , Humans , Belgium
8.
Nucleic Acids Res ; 38(Database issue): D57-61, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19933762

ABSTRACT

The ACLAME database is dedicated to the collection, analysis and classification of sequenced mobile genetic elements (MGEs, in particular phages and plasmids). In addition to providing information on the MGEs content, classifications are available at various levels of organization. At the gene/protein level, families group similar sequences that are expected to share the same function. Families of four or more proteins are manually assigned with a functional annotation using the GeneOntology and the locally developed ontology MeGO dedicated to MGEs. At the genome level, evolutionary cohesive modules group sets of protein families shared among MGEs. At the population level, networks display the reticulate evolutionary relationships among MGEs. To increase the coverage of the phage sequence space, ACLAME version 0.4 incorporates 760 high-quality predicted prophages selected from the Prophinder database. Most of the data can be downloaded from the freely accessible ACLAME web site (http://aclame.ulb.ac.be). The BLAST interface for querying the database has been extended and numerous tools for in-depth analysis of the results have been added.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Genome, Bacterial , Interspersed Repetitive Sequences , Repetitive Sequences, Nucleic Acid , Algorithms , Bacteriophages/genetics , Computational Biology/trends , Information Storage and Retrieval/methods , Internet , Plasmids/genetics , Software
9.
Microbiome ; 9(1): 232, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34823593

ABSTRACT

BACKGROUND: Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not. RESULTS: We present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges-87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors. CONCLUSIONS: To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses. Video abstract.


Subject(s)
Ecosystem , Microbial Consortia , Climate , Plankton
10.
Front Oncol ; 11: 609521, 2021.
Article in English | MEDLINE | ID: mdl-34490074

ABSTRACT

Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.

11.
Commun Biol ; 4(1): 604, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021239

ABSTRACT

The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Carbon Cycle , DNA, Bacterial/genetics , Metagenome , Photosynthesis , Seawater/microbiology , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/analysis
12.
Nucleic Acids Res ; 36(Web Server issue): W444-51, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18524799

ABSTRACT

The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.


Subject(s)
Gene Expression Regulation , Metabolic Networks and Pathways , Protein Interaction Mapping , Software , Cluster Analysis , Computer Graphics , Internet , Oligonucleotide Array Sequence Analysis , Signal Transduction
13.
mBio ; 11(2)2020 03 31.
Article in English | MEDLINE | ID: mdl-32234815

ABSTRACT

Much of the diversity of prokaryotic genomes is contributed by the tightly controlled recombination activity of transposons (Tns). The Tn3 family is arguably one of the most widespread transposon families. Members carry a large range of passenger genes incorporated into their structures. Family members undergo replicative transposition using a DDE transposase to generate a cointegrate structure which is then resolved by site-specific recombination between specific DNA sequences (res) on each of the two Tn copies in the cointegrate. These sites also carry promoters controlling expression of the recombinase and transposase. We report here that a number of Tn3 members encode a type II toxin-antitoxin (TA) system, typically composed of a stable toxin and a labile antitoxin that binds the toxin and inhibits its lethal activity. This system serves to improve plasmid maintenance in a bacterial population and, until recently, was believed to be associated with bacterial persistence. At least six different TA gene pairs are associated with various Tn3 members. Our data suggest that several independent acquisition events have occurred. In contrast to most Tn3 family passenger genes, which are generally located away from the transposition module, the TA gene pairs abut the res site upstream of the resolvase genes. Although their role when part of Tn3 family transposons is unclear, this finding suggests a potential role for the embedded TA in stabilizing the associated transposon with the possibility that TA expression is coupled to expression of transposase and resolvase during the transposition process itself.IMPORTANCE Transposable elements (TEs) are important in genetic diversification due to their recombination properties and their ability to promote horizontal gene transfer. Over the last decades, much effort has been made to understand TE transposition mechanisms and their impact on prokaryotic genomes. For example, the Tn3 family is ubiquitous in bacteria, molding their host genomes by the paste-and-copy mechanism. In addition to the transposition module, Tn3 members often carry additional passenger genes (e.g., conferring antibiotic or heavy metal resistance and virulence), and three were previously known to carry a toxin-antitoxin (TA) system often associated with plasmid maintenance; however, the role of TA systems within the Tn3 family is unknown. The genetic context of TA systems in Tn3 members suggests that they may play a regulatory role in ensuring stable invasion of these Tns during transposition.


Subject(s)
Bacteria/genetics , DNA Transposable Elements , Multigene Family , Toxin-Antitoxin Systems/genetics , Bacteria/classification , Gene Expression Regulation, Bacterial , Gene Order , Genes, Bacterial , Models, Biological , Phylogeny , Promoter Regions, Genetic , Recombination, Genetic
14.
Mol Biol Evol ; 25(4): 762-77, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18234706

ABSTRACT

Bacteriophage genomes show pervasive mosaicism, indicating the importance of horizontal gene exchange in their evolution. Phage genomes represent unique combinations of modules, each of them with a different phylogenetic history. The traditional classification, based on a variety of criteria such as nucleic acid type (single/double-stranded DNA/RNA), morphology, and host range, appeared inconsistent with sequence analyses. With the genomic era, an ever increasing number of sequenced phages cannot be classified, in part due to a lack of morphological information and in part to the intrinsic incapability of tree-based methods to efficiently deal with mosaicism. This problem led some virologists to call for a moratorium on the creation of additional taxa in the order Caudovirales, in order to let virologists discuss classification schemes that might better suit phage evolution. In this context, we propose a framework for a reticulate classification of phages based on gene content. Starting from gene families, we built a weighted graph, where nodes represent phages and edges represent phage-phage similarities in terms of shared genes. We then apply various measures of graph topology to analyze the resulting graph. Most double-stranded DNA phages are found in a single component. The values of the clustering coefficient and closeness distinguish temperate from virulent phages, whereas chimeric phages are characterized by a high betweenness coefficient. We apply a 2-step clustering method to this graph to generate a reticulate classification of phages: Each phage is associated with a membership vector, which quantitatively characterizes its membership to the set of clusters. Furthermore, we cluster genes based on their "phylogenetic profiles" to define "evolutionary cohesive modules." In virulent phages, evolutionary modules span several functional categories, whereas in temperate phages they correspond better to functional modules. Moreover, despite the fact that modules only cover a fraction of all phage genes, phage groups can be distinguished by their different combination of modules, serving the bases for a higher level reticulate classification. These 2 classification schemes provide an automatic and dynamic way of representing the relationships within the phage population and can be extended to include newly sequenced phage genomes, as well as other types of genetic elements.


Subject(s)
Bacteriophages/genetics , Biological Evolution , Genome, Viral/genetics , Algorithms , Bacteriophages/classification , Base Sequence , Cluster Analysis , Models, Genetic , Phylogeny , Sequence Analysis, DNA
15.
Bioinformatics ; 24(6): 863-5, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18238785

ABSTRACT

UNLABELLED: Prophinder is a prophage prediction tool coupled with a prediction database, a web server and web service. Predicted prophages will help to fill the gaps in the current sparse phage sequence space, which should cover an estimated 100 million species. Systematic and reliable predictions will enable further studies of prophages contribution to the bacteriophage gene pool and to better understand gene shuffling between prophages and phages infecting the same host. AVAILABILITY: Softare is available at http://aclame.ulb.ac.be/prophinder


Subject(s)
Chromosome Mapping/methods , DNA, Viral/physiology , Genome, Viral/genetics , Prokaryotic Cells/physiology , Prophages/genetics , Sequence Analysis, DNA/methods , Software , Algorithms , Base Sequence , Molecular Sequence Data , Prokaryotic Cells/virology , User-Computer Interface
16.
Appl Environ Microbiol ; 75(21): 6929-36, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19734330

ABSTRACT

So far, only scarce and rather diffuse information is available on bacteriophages infecting members of the genus Bifidobacterium. In the current study, we investigated the genetic organization, phylogenetic relationships, and, in some cases, transcription profiles and inducibility of 19 prophage-like elements present on the individual chromosomes of nine bifidobacterial strains, which represent six different species.


Subject(s)
Bifidobacterium/genetics , Bifidobacterium/virology , DNA, Bacterial/genetics , Genome, Bacterial , Prophages/genetics , Computational Biology , Gene Expression Profiling , Gene Order , Phylogeny , Sequence Homology
17.
FEMS Microbiol Rev ; 30(6): 980-94, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17064288

ABSTRACT

Many plasmids are mobile genetic elements (MGEs) and, as other members of that group of DNA entities, their genomes display a mosaic and combinatorial structure, making their classification extremely difficult. As other MGEs, plasmids play a major role in horizontal transfer of genetic materials and genome reorganization. Yet, the full impact of such phenomenon on major properties of the host cell, such as pathogenicity, the ability to use new carbon sources or resistance to antibiotics, remains to be fully assessed. More and more complete plasmid genome sequences are available. However, in the absence of standards for storing plasmid sequence data and annotating genes and gene products on sequenced plasmid genomes, the resulting information remains rather limited. Using 503 sequenced plasmids organized in the ACLAME database, we discuss how, by structuring information on the genomes, their host and the proteins they code for, one can gain access to either global or more detailed analysis of the plasmid sequence information, as illustrated by a network representation of the relationships between plasmids.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Databases, Genetic , Plasmids , Bacteria/metabolism , Bacterial Proteins/classification , Bacterial Proteins/metabolism , Computational Biology , Gene Regulatory Networks , Open Reading Frames/genetics , Species Specificity
18.
Nat Commun ; 9(1): 373, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29371626

ABSTRACT

While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.


Subject(s)
Aquatic Organisms , Eukaryota/genetics , Eukaryotic Cells/metabolism , Metagenome , Phylogeny , Zooplankton/genetics , Amino Acid Sequence , Animals , Atlases as Topic , Bacteria/classification , Bacteria/genetics , Biodiversity , Ecosystem , Eukaryota/classification , Eukaryotic Cells/cytology , Metagenomics/methods , Oceans and Seas , Phytoplankton/classification , Phytoplankton/genetics , Seawater , Viruses/classification , Viruses/genetics , Zooplankton/classification
19.
Res Microbiol ; 158(7): 567-71, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17614261

ABSTRACT

As is the case for other genomes and metagenomes, complete nucleotide sequences of bacteriophages and archaeviruses have become increasingly numerous and require robust annotation tools. We present here the first version of a phage ontology, PhiGO, which should contribute to more informational annotation of gene products in phage and prophage sequences. PhiGO uses the Gene Ontology schema, the de facto standard for describing knowledge about gene products across many databases.


Subject(s)
Archaeal Viruses/classification , Archaeal Viruses/genetics , Bacteriophages/classification , Bacteriophages/genetics , Genome, Viral/genetics , Viral Proteins/genetics , Computational Biology , Databases, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL