Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Acta Neuropathol ; 145(3): 303-324, 2023 03.
Article in English | MEDLINE | ID: mdl-36538112

ABSTRACT

Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Brain/pathology , Hippocampus/pathology , Cognition
2.
Mol Pharmacol ; 99(2): 133-146, 2021 02.
Article in English | MEDLINE | ID: mdl-33288547

ABSTRACT

Oligodendrocytes (OLs) express functional GABAA receptors (GABAARs) that are activated by GABA released at synaptic contacts with axons or by ambient GABA in extrasynaptic domains. In both instances, the receptors' molecular identity has not been fully defined. Furthermore, data on their structural diversity in different brain regions and information on age-dependent changes in their molecular composition are scant. This lack of knowledge has delayed access to a better understanding of the role of GABAergic signaling between neurons and OLs. Here, we used functional, and pharmacological analyses, as well as gene and protein expression of GABAAR subunits, to explore the subunit combination that could explain the receptor functional profile expressed in OLs from the neonate rat. We found that GABAAR composed of α3ß2γ1 subunits mimicked the characteristics of the endogenous receptor when expressed heterologously in Xenopus laevis oocytes. Either α3 or γ1 subunit silencing by small interfering RNA transfection changed the GABA-response characteristics in oligodendrocyte precursor cells, indicating their participation in the endogenous receptor conformation. Thus, α3 subunit silencing shifted the mean EC50 for GABA from 75.1 to 46.6 µM, whereas γ1 silencing reduced the current amplitude response by 55%. We also observed that ß-carbolines differentially enhance GABA responses in oligodendroglia as compared with those in neurons. These results contribute to defining the molecular and pharmacological properties of GABAARs in OLs. Additionally, the identification of ß-carbolines as selective enhancers of GABAARs in OLs may help to study the role of GABAergic signaling during myelination. SIGNIFICANCE STATEMENT: GABAergic signaling through GABAA receptors (GABAARs) expressed in the oligodendroglial lineage contributes to the myelination control. Determining the molecular identity and the pharmacology of these receptors is essential to define their specific roles in myelination. Using GABAAR subunit expression and silencing, we identified that the GABAAR subunit combination α3ß2γ1 conforms the bulk of GABAARs in oligodendrocytes from rat neonates. Furthermore, we found that these receptors have differential pharmacological properties that allow specific positive modulation by ß-carbolines.


Subject(s)
Brain/cytology , Neurons/cytology , Oligodendroglia/cytology , Receptors, GABA-A/metabolism , Animals , Animals, Newborn , Brain/metabolism , Carbolines/pharmacology , Cells, Cultured , Female , Gene Silencing , Mice , Neurons/metabolism , Oligodendroglia/metabolism , Rats , Receptors, GABA-A/genetics , Xenopus laevis
3.
Mol Pharmacol ; 89(4): 446-56, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26869399

ABSTRACT

Dipicrylamine (DPA) is a commonly used acceptor agent in Förster resonance energy transfer experiments that allows the study of high-frequency neuronal activity in the optical monitoring of voltage in living cells. However, DPA potently antagonizes GABAA receptors that contain α1 and ß2 subunits by a mechanism which is not clearly understood. In this work, we aimed to determine whether DPA modulation is a general phenomenon of Cys-loop ligand-gated ion channels (LGICs), and whether this modulation depends on particular amino acid residues. For this, we studied the effects of DPA on human homomeric GABAρ1, α7 nicotinic, and 5-HT3A serotonin receptors expressed in Xenopus oocytes. Our results indicate that DPA is an allosteric modulator of GABAρ1 receptors with an IC50 of 1.6 µM, an enhancer of α7 nicotinic receptors at relatively high concentrations of DPA, and has little, if any, effect on 5-HT3A receptors. DPA antagonism of GABAρ1 was strongly enhanced by preincubation, was slightly voltage-dependent, and its washout was accelerated by bovine serum albumin. These results indicate that DPA modulation is not a general phenomenon of LGICs, and structural differences between receptors may account for disparities in DPA effects. In silico modeling of DPA docking to GABAρ1, α7 nicotinic, and 5-HT3A receptors suggests that a hydrophobic pocket within the Cys-loop and the M4 segment in GABAρ1, located at the extracellular/membrane interface, facilitates the interaction with DPA that leads to inhibition of the receptor. Functional examinations of mutant receptors support the involvement of the M4 segment in the allosteric modulation of GABAρ1 by DPA.


Subject(s)
Cystine/chemistry , Cystine/metabolism , Picrates/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Animals , Cattle , Dose-Response Relationship, Drug , Female , Humans , Picrates/pharmacology , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/physiology , Torpedo , Xenopus laevis
4.
Proc Natl Acad Sci U S A ; 109(25): 10071-6, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22691495

ABSTRACT

The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, ß1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Receptors, GABA-A/metabolism , Aging/metabolism , Case-Control Studies , Down-Regulation , Humans
5.
Commun Biol ; 7(1): 200, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368460

ABSTRACT

Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.


Subject(s)
Brain , Substantia Nigra , Humans , RNA-Seq , Brain/metabolism , Substantia Nigra/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics
6.
Membranes (Basel) ; 13(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37888003

ABSTRACT

The Xenopus is a special study model in experimental research [...].

7.
Front Mol Neurosci ; 16: 1279232, 2023.
Article in English | MEDLINE | ID: mdl-37953877

ABSTRACT

Introduction: Oligodendrocyte progenitor cells (OPCs) are vital for neuronal myelination and remyelination in the central nervous system. While the molecular mechanisms involved in OPCs' differentiation and maturation are not completely understood, GABA is known to positively influence these processes through the activation of GABAA receptors (GABAARs). The molecular identity of GABAARs expressed in human OPCs remains unknown, which restricts their specific pharmacological modulation to directly assess their role in oligodendrocytes' maturation and remyelination. Methods: In this study, we conducted a transcriptomic analysis to investigate the molecular stoichiometry of GABAARs in OPCs from the human brain. Using eight available transcriptomic datasets from the human brain cortex of control individuals, we analyzed the mRNA expression of all 19 known GABAARs subunit genes in OPCs, with variations observed across different ages. Results: Our analysis indicated that the most expressed subunits in OPCs are α1-3, ß1-3, γ1-3, and ε. Moreover, we determined that the combination of any α with ß2 and γ2 is likely to form heteropentameric GABAARs in OPCs. Importantly, we also found a strong correlation between GABAAR subunits and transcripts for postsynaptic scaffold proteins, suggesting the potential postsynaptic clustering of GABAARs in OPCs. Discussion: This study presents the first transcriptional-level identification of GABAAR subunits expressed in human OPCs, providing potential receptor combinations. Understanding the molecular composition of GABAARs in OPCs not only enhances our knowledge of the underlying mechanisms in oligodendrocyte maturation but also opens avenues for targeted pharmacological interventions aimed at modulating these receptors to promote remyelination in neurological disorders.

8.
J Neurosci Methods ; 396: 109920, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37459899

ABSTRACT

BACKGROUND: Synapses are highly specialized sites characterized by intricate networks of protein-protein interactions (PPIs) important to maintain healthy synapses. Therefore, mapping these networks could address unsolved questions about human cognition, synaptic plasticity, learning, and memory in physiological and pathological conditions. The limitation of analyzing synaptic interactions in living humans has led to the development of methods to isolate synaptic terminals (synaptosomes) from cryopreserved human brains. NEW METHOD: Here, we established a method to detect synaptic PPIs by applying flow cytometric proximity ligation assay (FlowPLA) to synaptosomes isolated from frozen human frontal cortex (FC) and hippocampus (HP) (Syn-FlowPLA). RESULTS: Applying this method in synaptosomes, we were able to detect the known post-synaptic interactions between distinct subtypes of N-methyl-D-aspartate glutamate receptors (NMDARs) and their anchoring postsynaptic density 95 protein (PSD95). Moreover, we detected the known pre-synaptic interactions between the SNARE complex proteins synaptosomal-associated protein of 25 kDa (SNAP25), synaptobrevin (VAMP2), and syntaxin 1a (STX1A). As a negative control, we analyzed the interaction between mitochondrial superoxide dismutase 2 (SOD2) and PSD95, which are not expected to be physically associated. COMPARISON WITH EXISTING METHODS: PPIs have been studied in vitro primarily by co-immunoprecipitation, affinity chromatography, protein-fragment complementation assays (PCAs), and flow cytometry. All these are valid approaches; however, they require more steps or combination with other techniques. PLA technology identifies PPIs with high specificity and sensitivity. CONCLUSIONS: The Syn-FlowPLA described here allows rapid analyses of PPIs, specifically within the synaptic compartment isolated from frozen autopsy specimens, achieving greater target sensitivity. Syn-FlowPLA, as presented here, is therefore a useful method to study human synaptic PPI in physiological and pathological conditions.


Subject(s)
Synapses , Synaptosomes , Humans , Flow Cytometry , Synapses/metabolism , Synaptosomes/metabolism , Presynaptic Terminals , Neuronal Plasticity
9.
Transl Psychiatry ; 13(1): 93, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932057

ABSTRACT

Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not. APD exposure was associated with numerous changes in the brain transcriptome, especially among SCZ patients on atypical APDs. Brain transcriptome data from macaques chronically treated with APDs showed that APDs affect the expression of many functionally relevant genes, some of which show expression changes in the same directions as those observed in SCZ. Co-expression modules enriched for synaptic function showed convergent patterns between SCZ and some of the APD effects, while those associated with inflammation and glucose metabolism exhibited predominantly divergent patterns between SCZ and APD effects. In contrast, major cell-type shifts inferred in SCZ were primarily unaffected by APD use. These results show that APDs may confound SCZ-associated gene expression changes in postmortem brain tissue. Disentangling these effects will help identify causal genes and improve our neurobiological understanding of SCZ.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/drug therapy , Schizophrenia/genetics , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Brain/metabolism , Prefrontal Cortex/metabolism , Transcriptome
10.
Biomedicines ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35885050

ABSTRACT

Neurodegenerative diseases are the result of progressive dysfunction of the neuronal activity and subsequent neuronal death. Currently, the most prevalent neurodegenerative diseases are by far Alzheimer's (AD) and Parkinson's (PD) disease, affecting millions of people worldwide. Although amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks for AD and Lewy bodies (LB) are the hallmark for PD, current evidence strongly suggests that oligomers seeding the neuropathological hallmarks are more toxic and disease-relevant in both pathologies. The presence of small soluble oligomers is the common bond between AD and PD: amyloid ß oligomers (AßOs) and Tau oligomers (TauOs) in AD and α-synuclein oligomers (αSynOs) in PD. Such oligomers appear to be particularly increased during the early pathological stages, targeting synapses at vulnerable brain regions leading to synaptic plasticity disruption, synapse loss, inflammation, excitation to inhibition imbalance and cognitive impairment. Absence of TauOs at synapses in individuals with strong AD disease pathology but preserved cognition suggests that mechanisms of resilience may be dependent on the interactions between soluble oligomers and their synaptic targets. In this review, we will discuss the current knowledge about the interactions between soluble oligomers and synaptic dysfunction in patients diagnosed with AD and PD, how it affects excitatory and inhibitory synaptic transmission, and the potential mechanisms of synaptic resilience in humans.

11.
Membranes (Basel) ; 12(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36295690

ABSTRACT

Metabotropic glutamate receptors (mGluRs) are membrane receptors that play a central role in the modulation of synaptic transmission and neuronal excitability and whose dysregulation is implicated in diverse neurological disorders. Most current understanding about the electrophysiological properties of such receptors has been determined using recombinant proteins. However, recombinant receptors do not necessarily recapitulate the properties of native receptors due to the lack of obligated accessory proteins, some of which are differentially expressed as function of developmental stage and brain region. To overcome this limitation, we sought to microtransplant entire synaptosome membranes from frozen rat cortex into Xenopus oocytes, and directly analyze the responses elicited by native mGluRs. We recorded ion currents elicited by 1 mM glutamate using two electrodes voltage clamp. Glutamate produced a fast ionotropic response (6 ± 0.3 nA) in all microtransplanted oocytes (n = 218 oocytes) and a delayed oscillatory response (52 ± 7 nA) in 73% of them. The participation of Group 1 mGluRs was confirmed by the presence of metabotropic oscillations during the administration of (±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD; Group 1 mGluR agonist), and the absence of oscillations during co-administration of N-(1-adamantyl)quinoxaline-2-carboxamide (NPS 2390; Group 1 mGluR antagonist). Since both mGluR1 and mGluR5 belong to Group 1 mGluRs, further investigation revealed that mGluR1 antagonism with LY 456236 has little effect on metabotropic oscillations, while mGluR5 antagonism with 100 µM AZD 9272 has significant reduction of metabotropic currents elicited by ACPD and glutamate. We confirmed the expression of mGluR1 and mGluR5 in native synaptosomes by immunoblots, both of which are enhanced when compared to their counterpart proteins in rat cortex tissue lysates. Finally, these results demonstrate the merit of using microtransplantation of native synaptosomes for the study of mGluRs and the contribution of mGluR5 to the metabotropic glutamate signaling, providing a better tool for the understanding of the role of these receptors in neurological disorders.

12.
J Vis Exp ; (185)2022 07 20.
Article in English | MEDLINE | ID: mdl-35938847

ABSTRACT

Excitatory and inhibitory ionotropic receptors are the major gates of ion fluxes that determine the activity of synapses during physiological neuronal communication. Therefore, alterations in their abundance, function, and relationships with other synaptic elements have been observed as a major correlate of alterations in brain function and cognitive impairment in neurodegenerative diseases and mental disorders. Understanding how the function of excitatory and inhibitory synaptic receptors is altered by disease is of critical importance for the development of effective therapies. To gain disease-relevant information, it is important to record the electrical activity of neurotransmitter receptors that remain functional in the diseased human brain. So far this is the closest approach to assess pathological alterations in receptors' function. In this work, a methodology is presented to perform microtransplantation of synaptic membranes, which consists of reactivating synaptic membranes from snap frozen human brain tissue containing human receptors, by its injection and posterior fusion into the membrane of Xenopus laevis oocytes. The protocol also provides the methodological strategy to obtain consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ-aminobutyric acid (GABA) receptors, as well as novel detailed methods that are used for normalization and rigorous data analysis.


Subject(s)
Oocytes , Synaptic Membranes , Humans , Oocytes/physiology , Receptors, GABA , Receptors, Neurotransmitter/physiology , Synapses , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
13.
Schizophr Res ; 249: 25-37, 2022 11.
Article in English | MEDLINE | ID: mdl-32513544

ABSTRACT

Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.


Subject(s)
Receptors, AMPA , Schizophrenia , Humans , Receptors, AMPA/genetics , Synaptic Transmission/physiology , Schizophrenia/genetics , Proteomics , Kainic Acid
14.
Proc Natl Acad Sci U S A ; 105(31): 10973-7, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18645182

ABSTRACT

Autism is a complex disorder that arises from the pervasive action of genetic and epigenetic factors that alter synaptic connectivity of the brain. Although GABA and glutamate receptors seem to be two of those factors, very little is known about the functional properties of the autistic receptors. Autistic tissue samples stored in brain banks usually have relatively long postmortem times, and it is highly desirable to know whether neurotransmitter receptors in such tissues are still functional. Here we demonstrate that native receptors microtransplanted from autistic brains, as well as de novo mRNA-expressed receptors, are still functional and susceptible to detailed electrophysiological characterization even after long postmortem intervals. The opportunity to study the properties of human receptors present in diseased brains not only opens new avenues toward understanding autism and other neurological disorders, but it also makes the microtransplantation method a useful translational system to evaluate and develop novel medicinal drugs.


Subject(s)
Autistic Disorder/metabolism , Brain/metabolism , Microsurgery/methods , Oocytes , Receptors, GABA/metabolism , Receptors, Glutamate/metabolism , Transplantation, Heterologous/methods , Animals , Electrophysiology , RNA, Messenger/genetics , Xenopus
15.
Neurosci Lett ; 755: 135938, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33915226

ABSTRACT

Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.


Subject(s)
Brain/metabolism , Protein Subunits/biosynthesis , Protein Subunits/genetics , Receptors, AMPA/biosynthesis , Receptors, AMPA/genetics , Transcriptome/physiology , Gene Expression , Humans
16.
Nat Commun ; 12(1): 2603, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972518

ABSTRACT

Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.


Subject(s)
Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Down Syndrome/physiopathology , Parietal Lobe/anatomy & histology , Parietal Lobe/metabolism , Synapses/metabolism , Synaptic Membranes/physiology , Amyloid beta-Peptides/metabolism , Animals , Anura , Autopsy , Cognitive Dysfunction/metabolism , Disks Large Homolog 4 Protein/metabolism , Down Syndrome/metabolism , Female , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Nerve Net/physiopathology , Oocytes/physiology , Parietal Lobe/physiopathology , Synapses/pathology , Synaptic Membranes/metabolism , Synaptosomes/metabolism , Synaptosomes/pathology , Tomography, Optical , Transcriptome/genetics
17.
Sci Rep ; 10(1): 11352, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647210

ABSTRACT

Theoretical and experimental work has demonstrated that excitatory (E) and inhibitory (I) currents within cortical circuits stabilize to a balanced state. This E/I balance, observed from single neuron to network levels, has a fundamental role in proper brain function and its impairment has been linked to numerous brain disorders. Over recent years, large amount of microarray and RNA-Sequencing datasets have been collected, however few studies have made use of these resources for exploring the balance of global gene expression levels between excitatory AMPA receptors (AMPARs) and inhibitory GABAA receptors. Here, we analyzed the relative relationships between these receptors to generate a basic transcriptional marker of E/I ratio. Using publicly available data from the Allen Brain Institute, we generated whole brain and regional signatures of AMPAR subunit gene expression in healthy human brains as well as the transcriptional E/I (tE/I) ratio. Then we refined the tE/I ratio to cell-type signatures in the mouse brain using data from the Gene Expression Omnibus. Lastly, we applied our workflow to developmental data from the Allen Brain Institute and revealed spatially and temporally controlled changes in the tE/I ratio during the embryonic and early postnatal stages that ultimately lead to the tE/I balance in adults.


Subject(s)
Brain/physiology , Excitatory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/physiology , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Animals , Brain/cytology , Datasets as Topic , Humans , Mice , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Protein Subunits , RNA-Seq , Transcriptome/physiology
18.
Neuroscience ; 439: 332-341, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31349005

ABSTRACT

Extracellular adenosine triphosphate (ATP) participates in maintaining the vascular tone in the CNS, particularly in the retina, via the tonic activity of ligand gated activated P2X1 receptors. P2X1 receptors are characterized by their high affinity for ATP and their strong desensitization to concentrations of ATP that are 200-fold lower than their EC50. The mechanism behind P2X1 tonic activity remains unclear. In this study, we expressed human P2X1 (hP2X1) homomeric receptors in Xenopus oocytes to explore the relationship between ATP release from oocytes at rest, hP2X1, and Ca2+-activated Cl- channels. Our results indicate that Xenopus oocytes release ATP at rest via vesicular exocytosis, and this process is a constitutive phenomenon independent of extracellular Ca2+. Our results also indicate that hP2X1 receptors are able to sustain a tonic activity of Ca2+-activated Cl- channels. In the presence of extracellular Ca2+ the activity of hP2X1 receptors is greatly amplified by its coupling with Ca2+-activated Cl- channels. Future studies addressing the relationship between hP2X1 receptors and Ca2+-activated Cl- channels in vascular smooth muscle cells should provide information about additional mechanisms that regulate the vascular tone and their potential as pharmaceutical targets. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Subject(s)
Adenosine Triphosphate , Calcium , Chlorides , Receptors, Purinergic P2X1 , Animals , Calcium/metabolism , Calcium Chloride , Humans , Oocytes , Xenopus
19.
Sci Rep ; 10(1): 8626, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32451470

ABSTRACT

The study of postsynaptic excitation to inhibition (E/I ratio) imbalances in human brain diseases, is a highly relevant functional measurement poorly investigated due to postmortem degradation of synaptic receptors. We show that near-simultaneous recording of microtransplanted synaptic receptors after simulated morgue conditions allows the determination of the postsynaptic E/I ratio for at least 120 h after death, expanding the availability and use of human diseased tissue stored in brain banks.


Subject(s)
Brain/physiology , Excitatory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/physiology , Adult , Animals , Brain Diseases/pathology , Excitatory Postsynaptic Potentials/drug effects , Female , Humans , Inhibitory Postsynaptic Potentials/drug effects , Kainic Acid/pharmacology , Male , Oocytes/cytology , Oocytes/metabolism , Rats , Rats, Wistar , Receptors, Neurotransmitter/metabolism , Synaptosomes/drug effects , Synaptosomes/physiology , Temperature , Time Factors , gamma-Aminobutyric Acid/pharmacology
20.
J Alzheimers Dis ; 78(4): 1661-1678, 2020.
Article in English | MEDLINE | ID: mdl-33185603

ABSTRACT

BACKGROUND: Certain individuals, here referred to as Non-Demented with Alzheimer Neuropathology (NDAN), do not show overt neurodegeneration (N-) and remain cognitively intact despite the presence of plaques (A+) and tangles (T+) that would normally be consistent with fully symptomatic Alzheimer's disease (AD). OBJECTIVE: The existence of NDAN (A + T+N-) subjects suggests that the human brain utilizes intrinsic mechanisms that can naturally evade cognitive decline normally associated with the symptomatic stages of AD (A + T+N+). Deciphering the underlying mechanisms would prove relevant to develop complementing therapeutics to prevent progression of AD-related cognitive decline. METHODS: Previously, we have reported that NDAN present with preserved neurogenesis and synaptic integrity paralleled by absence of amyloid oligomers at synapses. Using postmortem brain samples from age-matched control subjects, demented AD patients and NDAN individuals, we performed immunofluorescence, western blots, micro transplantation of synaptic membranes in Xenopus oocytes followed by twin electrode voltage clamp electrophysiology and fluorescence assisted single synaptosome-long term potentiation studies. RESULTS: We report decreased tau oligomers at synapses in the brains of NDAN subjects. Furthermore, using novel approaches we report, for the first time, that such absence of tau oligomers at synapses is associated with synaptic functional integrity in NDAN subjects as compared to demented AD patients. CONCLUSION: Overall, these results give further credence to tau oligomers as primary actors of synaptic destruction underscoring cognitive demise in AD and support their targeting as a viable therapeutic strategy for AD and related tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Cognition , Frontal Lobe/metabolism , Hippocampus/metabolism , Neurofibrillary Tangles/metabolism , Plaque, Amyloid/metabolism , Synapses/metabolism , tau Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Female , Frontal Lobe/pathology , Hippocampus/pathology , Humans , Male , Middle Aged , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL