Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.080
Filter
1.
Nature ; 595(7868): 521-525, 2021 07.
Article in English | MEDLINE | ID: mdl-34290425

ABSTRACT

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

2.
Blood ; 143(26): 2749-2762, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38498025

ABSTRACT

ABSTRACT: Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1ß (IL-1ß) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1ß-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors. ASF1B, along with its paralogous protein ASF1A, recruits H3-H4 histones onto the replication fork during S-phase, a process regulated by Tousled-like kinase 1 and 2 (TLKs). Although ASF1s and TLKs are known to be overexpressed in multiple solid tumors and associated with poor prognosis, their functional roles in hematopoiesis and inflammation-driven leukemia remain unexplored. In this study, we identify that ASF1s and TLKs are overexpressed in multiple genetic subtypes of AML. We demonstrate that depletion of ASF1s significantly reduces leukemic cell growth in both in vitro and in vivo models using human cells. Using a murine model, we show that overexpression of ASF1B accelerates leukemia progression. Moreover, Asf1b or Tlk2 deletion delayed leukemia progression, whereas these proteins are dispensable for normal hematopoiesis. Through proteomics and phosphoproteomics analyses, we uncover that the TLK-ASF1 pathway promotes leukemogenesis by affecting the cell cycle and DNA damage pathways. Collectively, our findings identify the TLK1-ASF1 pathway as a novel mediator of inflammatory signaling and a promising therapeutic target for AML treatment across diverse genetic subtypes. Selective inhibition of this pathway offers potential opportunities to intervene effectively, address intratumoral heterogeneity, and ultimately improve clinical outcomes in AML.


Subject(s)
Cell Cycle Proteins , Disease Progression , Interleukin-1beta , Leukemia, Myeloid, Acute , Protein Serine-Threonine Kinases , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Humans , Animals , Mice , Interleukin-1beta/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Histone Chaperones/metabolism , Histone Chaperones/genetics , Histones/metabolism , Histones/genetics , Cell Line, Tumor , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics
3.
Nature ; 583(7817): 533-536, 2020 07.
Article in English | MEDLINE | ID: mdl-32699400

ABSTRACT

The quantum-level interplay between geometry, topology and correlation is at the forefront of fundamental physics1-15. Kagome magnets are predicted to support intrinsic Chern quantum phases owing to their unusual lattice geometry and breaking of time-reversal symmetry14,15. However, quantum materials hosting ideal spin-orbit-coupled kagome lattices with strong out-of-plane magnetization are lacking16-21. Here, using scanning tunnelling microscopy, we identify a new topological kagome magnet, TbMn6Sn6, that is close to satisfying these criteria. We visualize its effectively defect-free, purely manganese-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state shows distinct Landau quantization on application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk-boundary correspondence between the Chern gap and the topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, and may enable the observation of topological quantum phenomena in the RMn6Sn6 (where R is a rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk-boundary-Berry correspondence covering real space and momentum space demonstrates a proof-of-principle method for revealing topological magnets.

4.
Nature ; 578(7796): 545-549, 2020 02.
Article in English | MEDLINE | ID: mdl-32103195

ABSTRACT

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels1,2. Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology2. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes1. Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order3-6, electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest3-15, no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials4,16.

5.
Nature ; 567(7749): 500-505, 2019 03.
Article in English | MEDLINE | ID: mdl-30894753

ABSTRACT

The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology1-11, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals6,7 in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals' structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals5,8-11. Our results demonstrate an electronic topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials6.

6.
Nature ; 565(7739): 337-342, 2019 01.
Article in English | MEDLINE | ID: mdl-30559379

ABSTRACT

The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.

7.
BMC Genomics ; 25(1): 600, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877417

ABSTRACT

BACKGROUND: Splicing variants are a major class of pathogenic mutations, with their severity equivalent to nonsense mutations. However, redundant and degenerate splicing signals hinder functional assessments of sequence variations within introns, particularly at branch sites. We have established a massively parallel splicing assay to assess the impact on splicing of 11,191 disease-relevant variants. Based on the experimental results, we then applied regression-based methods to identify factors determining splicing decisions and their respective weights. RESULTS: Our statistical modeling is highly sensitive, accurately annotating the splicing defects of near-exon intronic variants, outperforming state-of-the-art predictive tools. We have incorporated the algorithm and branchpoint information into a web-based tool, SpliceAPP, to provide an interactive application. This user-friendly website allows users to upload any genetic variants with genome coordinates (e.g., chr15 74,687,208 A G), and the tool will output predictions for splicing error scores and evaluate the impact on nearby splice sites. Additionally, users can query branch site information within the region of interest. CONCLUSIONS: In summary, SpliceAPP represents a pioneering approach to screening pathogenic intronic variants, contributing to the development of precision medicine. It also facilitates the annotation of splicing motifs. SpliceAPP is freely accessible using the link https://bc.imb.sinica.edu.tw/SpliceAPP . Source code can be downloaded at https://github.com/hsinnan75/SpliceAPP .


Subject(s)
Internet , Mutation , RNA Splicing , Software , Humans , Algorithms , Introns/genetics , RNA Splice Sites/genetics , Computational Biology/methods
8.
Nat Mater ; 22(5): 583-590, 2023 May.
Article in English | MEDLINE | ID: mdl-36894774

ABSTRACT

Using circularly polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of chirality and magnetization, with important implications in asymmetric synthesis in chemistry; homochirality in biomolecules; and ferromagnetic spintronics. We report the surprising observation of helicity-dependent optical control of fully compensated antiferromagnetic order in two-dimensional even-layered MnBi2Te4, a topological axion insulator with neither chirality nor magnetization. To understand this control, we study an antiferromagnetic circular dichroism, which appears only in reflection but is absent in transmission. We show that the optical control and circular dichroism both arise from the optical axion electrodynamics. Our axion induction provides the possibility to optically control a family of [Formula: see text]-symmetric antiferromagnets ([Formula: see text], inversion; [Formula: see text], time-reversal) such as Cr2O3, even-layered CrI3 and possibly the pseudo-gap state in cuprates. In MnBi2Te4, this further opens the door for optical writing of a dissipationless circuit formed by topological edge states.

9.
Brain Behav Immun ; 120: 413-429, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925413

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric symptoms. Currently, there is no cure, and only limited treatments are available to manage the symptoms and to slow down the disease's progression. The molecular and cellular mechanisms of HD's pathogenesis are complex, involving immune cell activation, altered protein turnover, and disturbance in brain energy homeostasis. Microglia have been known to play a dual role in HD, contributing to neurodegeneration through inflammation but also enacting neuroprotective effects by clearing mHTT aggregates. However, little is known about the contribution of microglial metabolism to HD progression. This study explores the impact of a microglial metabolite transporter, equilibrative nucleoside transporter 3 (ENT3), in HD. Known as a lysosomal membrane transporter protein, ENT3 is highly enriched in microglia, with its expression correlated with HD severity. Using the R6/2 ENT3-/- mouse model, we found that the deletion of ENT3 increases microglia numbers yet worsens HD progression, leading to mHTT accumulation, cell death, and disturbed energy metabolism. These results suggest that the delicate balance between microglial metabolism and function is crucial for maintaining brain homeostasis and that ENT3 has a protective role in ameliorating neurodegenerative processes.

10.
Circ J ; 88(5): 663-671, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38325819

ABSTRACT

BACKGROUND: Complications arising from transcatheter closure of perimembranous ventricular septal defects (pmVSD) in children, such as residual shunts and aortic regurgitation (AR), have been observed. However, the associated risk factors remain unclear. This study identified risk factors linked with residual shunts and AR following transcatheter closure of pmVSD in children aged 2-12 years.Methods and Results: The medical records of 63 children with pmVSD and a pulmonary-to-systemic blood flow ratio <2.0 who underwent transcatheter closure between 2011 and 2018 were analyzed with a minimum 3-year follow-up. The success rate of transcatheter closure was 98.4%, with no emergency surgery, permanent high-degree atrioventricular block, or mortality. Defects ≥4.5 mm had significantly higher odds of persistent residual shunt (odds ratio [OR] 6.85; P=0.03). The use of an oversize device (≥1.5 mm) showed a trend towards reducing residual shunts (OR 0.23; P=0.06). Age <4 years (OR 27.38; 95% confidence interval [CI] 2.33-321.68) and perimembranous outlet-type VSD (OR 11.94, 95% CI 1.10-129.81) were independent risk factors for AR progression after closure. CONCLUSIONS: Careful attention is crucial for pmVSDs ≥4.5 mm to prevent persistent residual shunts in transcatheter closure. Assessing AR risk, particularly in children aged <4 years, is essential while considering the benefits of pmVSD closure.


Subject(s)
Cardiac Catheterization , Heart Septal Defects, Ventricular , Humans , Heart Septal Defects, Ventricular/surgery , Child, Preschool , Child , Risk Factors , Male , Female , Cardiac Catheterization/adverse effects , Retrospective Studies , Septal Occluder Device/adverse effects , Treatment Outcome , Aortic Valve Insufficiency/etiology , Age Factors , Time Factors , Follow-Up Studies , Postoperative Complications/etiology
11.
J Biomed Inform ; 151: 104622, 2024 03.
Article in English | MEDLINE | ID: mdl-38452862

ABSTRACT

OBJECTIVE: The integration of artificial intelligence (AI) and machine learning (ML) in health care to aid clinical decisions is widespread. However, as AI and ML take important roles in health care, there are concerns about AI and ML associated fairness and bias. That is, an AI tool may have a disparate impact, with its benefits and drawbacks unevenly distributed across societal strata and subpopulations, potentially exacerbating existing health inequities. Thus, the objectives of this scoping review were to summarize existing literature and identify gaps in the topic of tackling algorithmic bias and optimizing fairness in AI/ML models using real-world data (RWD) in health care domains. METHODS: We conducted a thorough review of techniques for assessing and optimizing AI/ML model fairness in health care when using RWD in health care domains. The focus lies on appraising different quantification metrics for accessing fairness, publicly accessible datasets for ML fairness research, and bias mitigation approaches. RESULTS: We identified 11 papers that are focused on optimizing model fairness in health care applications. The current research on mitigating bias issues in RWD is limited, both in terms of disease variety and health care applications, as well as the accessibility of public datasets for ML fairness research. Existing studies often indicate positive outcomes when using pre-processing techniques to address algorithmic bias. There remain unresolved questions within the field that require further research, which includes pinpointing the root causes of bias in ML models, broadening fairness research in AI/ML with the use of RWD and exploring its implications in healthcare settings, and evaluating and addressing bias in multi-modal data. CONCLUSION: This paper provides useful reference material and insights to researchers regarding AI/ML fairness in real-world health care data and reveals the gaps in the field. Fair AI/ML in health care is a burgeoning field that requires a heightened research focus to cover diverse applications and different types of RWD.


Subject(s)
Artificial Intelligence , Machine Learning , Humans , Benchmarking , Research Personnel
12.
Pediatr Nephrol ; 39(5): 1429-1434, 2024 May.
Article in English | MEDLINE | ID: mdl-38057433

ABSTRACT

BACKGROUND: The objective of this study was to explore the frequency of occurrence of extra-renal manifestations associated with monogenic nephrolithiasis. METHODS: A literature review was conducted to identify genes that are monogenic causes of nephrolithiasis. The Online Mendelian Inheritance in Man (OMIM) database was used to identify associated diseases and their properties. Disease phenotypes were ascertained using OMIM clinical synopses and sorted into 24 different phenotype categories as classified in OMIM. Disease phenotypes caused by the same gene were merged into a phenotypic profile of a gene (PPG) such that one PPG encompasses all related disease phenotypes for a specific gene. The total number of PPGs involving each phenotype category was measured, and the median phenotype category was determined. Phenotype categories were classified as overrepresented or underrepresented if the number of PPGs involving them was higher or lower than the median, respectively. Chi-square test was conducted to determine whether the number of PPGs affecting a given category significantly deviated from the median. RESULTS: Fifty-five genes were identified as monogenic causes of nephrolithiasis. A total of six significantly overrepresented and three significantly underrepresented phenotype categories were identified (p < 0.05). Four phenotypic categories (growth, neurological, skeletal, and abdomen/gastrointestinal) are significantly overrepresented after Bonferroni correction for multiple comparisons (p < 0.002). Among all phenotypes, impaired growth is the most common manifestation. CONCLUSION: Recognizing the extra-renal manifestations associated with monogenic causes of kidney stones is critical for earlier diagnosis and optimal care in patients.


Subject(s)
Kidney Calculi , Nephrolithiasis , Humans , Nephrolithiasis/epidemiology , Kidney Calculi/complications , Phenotype , Kidney
13.
Nature ; 562(7725): 91-95, 2018 10.
Article in English | MEDLINE | ID: mdl-30209398

ABSTRACT

Owing to the unusual geometry of kagome lattices-lattices made of corner-sharing triangles-their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states1-9. In the presence of strong spin-orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin-orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin-orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity-a clear indication of electron correlation-and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials10-12.

14.
Nature ; 556(7701): 355-359, 2018 04.
Article in English | MEDLINE | ID: mdl-29670263

ABSTRACT

Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect1,2, valley polarization3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices6-10. However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization11-15, selenization16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS2 and WSe2. Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities in MoS2 and ReS2. Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

15.
Int J Med Sci ; 21(7): 1302-1306, 2024.
Article in English | MEDLINE | ID: mdl-38818474

ABSTRACT

Background: Hyperopia is a significant refractive error in children, often leading to vision impairment. This study aimed to investigate whether partial or full spectacle correction is benefit for hyperopia in preschool-aged children. Methods: A retrospective study was conducted on hyperopic children visited to teaching medical center outpatient clinic between October 2011 and October 2018, and were categorized into three groups: full correction, overcorrection, and undercorrection. The study was approved by the institutional ethical committee of Tri-Service General Hospital. Results: Following a minimum of one-year follow-up period, no statistically significant differences were observed in best-corrected visual acuity (BCVA) among children receiving full, over, or under spectacle correction. Notably, the overcorrection group exhibited a significant reduction in spherical equivalent (SE) compared to both the full and under correction groups, indicating a better SE with spectacle overcorrection. Conclusions: Spectacle overcorrection may offer potential benefits for enhancing SE in preschool children with hyperopia. Nevertheless, further investigation through randomized controlled trials is warranted to establish the validity of this approach and its impact on visual outcomes in this hyperopic pediatric population.


Subject(s)
Eyeglasses , Hyperopia , Visual Acuity , Humans , Hyperopia/therapy , Hyperopia/physiopathology , Retrospective Studies , Child, Preschool , Female , Male , Refraction, Ocular/physiology , Child , Treatment Outcome , Follow-Up Studies
16.
Postgrad Med J ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507113

ABSTRACT

BACKGROUND: Despite previous concerns about ocular side effects related to amiodarone, the relationship between amiodarone and cataract remains uncertain. Therefore, this study aimed to assess the potential association between amiodarone use and the subsequent risk of cataract, taking into account potential confounders. METHODS: This population-based, active comparator-controlled cohort study utilized the data from the Taiwan National Health Insurance program and involved adults over 40 years old between 2001 and 2013. We analyzed 12 055 new amiodarone users and contrasted them with a propafenone user cohort. The primary outcome was the incidence of cataract. Inverse-probability treatment-weighting (IPTW) was further used to eliminate the potential confounding effects, and Cox proportional-hazard regression analyses were performed to calculate the risk of cataract. Serial subgroup analyses were also performed. RESULTS: In the main analysis, amiodarone users did not exhibit a significant causal relationship in both full cohort [adjusted hazard ratio (aHR): 0.994, 95% confidence interval (CI): 0.913-1.082] and IPTW cohort (IPTW-aHR 0.977, 95% CI: 0.900-1.060). Furthermore, it is important to highlight a significantly reduced risk of cataract among patients with heart failure (IPTW-aHR 0.708, 95% CI: 0.554-0.905) and during the 2-year follow-up period (IPTW-aHR 0.889, 95% CI: 0.794-0.996), implying potential advantages linked to the use of amiodarone. CONCLUSIONS: The study found no increased risk of cataract with amiodarone, one of the most frequently used antiarrhythmic medications, compared to the use of propafenone. Future research is recommended to explore potential mechanisms and their implications for clinical practice.

17.
Pestic Biochem Physiol ; 198: 105710, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225068

ABSTRACT

Aedes aegypti, the primary vector responsible for transmitting dengue fever in southern Taiwan, has developed a relatively high resistance to synthetic pyrethroids. It has evolved four amino acid substitutions in the voltage-gated sodium channel (VGSC), namely S996P, V1023G, F1565C, and D1794Y. To unveil the distribution and correlation of VGSC mutations and pyrethroid resistance among different field populations, Ae. aegypti collected from various districts in Kaohsiung and Tainan Cities underwent tests for resistance development against different pyrethroids and frequency of S996P, V1023G, F1565C, and D1794Y substitutions. The adult knockdown assay revealed a relatively high knockdown resistance in the Ae. aegypti populations from Kaohsiung and Tainan against permethrin, cypermethrin, and fenvalerate (averaging >50-fold). Conversely, less resistance was observed against α-cypermethrin, deltamethrin, λ-cyhalothrin, cyfluthrin, and etofenprox (averaging <35-fold). Using Polymerase Chain Reaction/restriction fragment length polymorphism analysis, four mutant haplotypes were identified in these field populations. Notably, the SIAVFD and SIBVFD wild haplotypes were absent. Analysis utilizing IBM SPSS Statistics 20.0 and Spearman's rank correlation coefficient indicated that Haplotype C (PIAGFD), especially P allele, frequency displayed a significant positive correlation with five Type II pyrethroid resistance, while 1023G and 1023G/G exhibited a significant association with permethrin and fevalerate resistance. Conversely, Haplotype E (SIBVCD) negatively correlated with pyrethroid resistance, particularly fenvalerate resistance (-0.776). Haplotype C and E were the most prevalent and widely distributed among the investigated field populations. This prevalence of haplotype C is likely tied to the extensive and excessive use of Type II pyrethroids for dengue control over the past three decades. Given the significant positive correlation, the best-fit lines and R2 values were established to facilitate the swift prediction of knockdown resistance levels to various pyrethroids based on VGSC mutation frequency. This predictive approach aims to guide insecticide usage and the management of pyrethroid resistance in the field populations of Ae. aegypti in Taiwan.


Subject(s)
Aedes , Insecticides , Nitriles , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Permethrin , Aedes/genetics , Aedes/metabolism , Mutation Rate , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Mutation , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism , Mosquito Vectors/genetics
18.
Immunology ; 169(3): 271-291, 2023 07.
Article in English | MEDLINE | ID: mdl-36708143

ABSTRACT

The nucleotide-binding and oligomerization domain, leucine-rich repeats, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in innate immunity and is involved in the pathogenesis of autoinflammatory diseases. Glycolysis regulates NLRP3 inflammasome activation in macrophages. However, how lactic acid fermentation and pyruvate oxidation controlled by the mitochondrial pyruvate carrier (MPC) affect NLRP3 inflammasome activation and autoinflammatory disease remains elusive. We found that the inactivation of MPC with genetic depletion or pharmacological inhibitors, MSDC-0160 or pioglitazone, increased NLRP3 inflammasome activation and IL-1ß secretion in macrophages. Glycolytic reprogramming induced by MPC inhibition skewed mitochondrial ATP-associated oxygen consumption into cytosolic lactate production, which enhanced NLRP3 inflammasome activation in response to monosodium urate (MSU) crystals. As pioglitazone is an insulin sens MSDC-itizer used for diabetes, its MPC inhibitory effect in diabetic individuals was investigated. The results showed that MPC inhibition exacerbated MSU-induced peritonitis in diabetic mice and increased the risk of gout in patients with diabetes. Altogether, we found that glycolysis controlled by MPC regulated NLRP3 inflammasome activation and gout development. Accordingly, prescriptions for medications targeting MPC should consider the increased risk of NLRP3-related autoinflammatory diseases.


Subject(s)
Diabetes Mellitus, Experimental , Gout , Hereditary Autoinflammatory Diseases , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Monocarboxylic Acid Transporters/therapeutic use , Uric Acid , Pioglitazone/therapeutic use , Gout/pathology , Interleukin-1beta/metabolism
19.
Small ; 19(28): e2207404, 2023 07.
Article in English | MEDLINE | ID: mdl-36974592

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.


Subject(s)
Metal Nanoparticles , Pesticides , Gold/chemistry , Nicotine , Pesticides/analysis , Spectrum Analysis, Raman/methods , Thiram/analysis , Metal Nanoparticles/chemistry
20.
Nat Mater ; 21(10): 1111-1115, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35835819

ABSTRACT

Room-temperature realization of macroscopic quantum phases is one of the major pursuits in fundamental physics1,2. The quantum spin Hall phase3-6 is a topological quantum phase that features a two-dimensional insulating bulk and a helical edge state. Here we use vector magnetic field and variable temperature based scanning tunnelling microscopy to provide micro-spectroscopic evidence for a room-temperature quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. We find that the atomically resolved lattice exhibits a large insulating gap of over 200 meV, and an atomically sharp monolayer step edge hosts an in-gap gapless state, suggesting topological bulk-boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent in the underlying band topology. We further identify the geometrical hybridization of such edge states, which not only supports the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Our results further encourage the exploration of high-temperature transport quantization of the putative topological phase reported here.

SELECTION OF CITATIONS
SEARCH DETAIL