ABSTRACT
BACKGROUND: In early-onset severe hemolytic disease of the fetus and newborn (HDFN), transplacental transfer of maternal antierythrocyte IgG alloantibodies causes fetal anemia that leads to the use of high-risk intrauterine transfusions in order to avoid fetal hydrops and fetal death. Nipocalimab, an anti-neonatal Fc receptor blocker, inhibits transplacental IgG transfer and lowers maternal IgG levels. METHODS: In an international, open-label, single-group, phase 2 study, we assessed treatment with intravenous nipocalimab (30 or 45 mg per kilogram of body weight per week) administered from 14 to 35 weeks' gestation in participants with pregnancies at high risk for recurrent early-onset severe HDFN. The primary end point was live birth at 32 weeks' gestation or later without intrauterine transfusions as assessed against a historical benchmark (0%; clinically meaningful difference, 10%). RESULTS: Live birth at 32 weeks' gestation or later without intrauterine transfusions occurred in 7 of 13 pregnancies (54%; 95% confidence interval, 25 to 81) in the study. No cases of fetal hydrops occurred, and 6 participants (46%) did not receive any antenatal or neonatal transfusions. Six fetuses received an intrauterine transfusion: five fetuses at 24 weeks' gestation or later and one fetus before fetal loss at 22 weeks and 5 days' gestation. Live birth occurred in 12 pregnancies. The median gestational age at delivery was 36 weeks and 4 days. Of the 12 live-born infants, 1 received one exchange transfusion and one simple transfusion and 5 received only simple transfusions. Treatment-related decreases in the alloantibody titer and IgG level were observed in maternal samples and cord blood. No unusual maternal or pediatric infections were observed. Serious adverse events were consistent with HDFN, pregnancy, or prematurity. CONCLUSIONS: Nipocalimab treatment delayed or prevented fetal anemia or intrauterine transfusions, as compared with the historical benchmark, in pregnancies at high risk for early-onset severe HDFN. (Funded by Janssen Research and Development; UNITY ClinicalTrials.gov number, NCT03842189.).
Subject(s)
Antibodies, Monoclonal, Humanized , Erythroblastosis, Fetal , Hydrops Fetalis , Immunoglobulin G , Isoantibodies , Adult , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Blood Transfusion, Intrauterine/adverse effects , Erythroblastosis, Fetal/blood , Erythroblastosis, Fetal/immunology , Erythroblastosis, Fetal/therapy , Gestational Age , Histocompatibility Antigens Class I , Immunoglobulin G/immunology , Isoantibodies/blood , Isoantibodies/immunology , Live Birth , Receptors, Fc/antagonists & inhibitors , Receptors, Fc/blood , Receptors, Fc/immunology , Infusions, Intravenous , Hydrops Fetalis/immunology , Hydrops Fetalis/prevention & control , Anemia/immunology , Anemia/prevention & controlABSTRACT
OBJECTIVE: Nipocalimab is a neonatal fragment crystallizable (Fc) receptor (FcRn)-blocking monoclonal antibody that inhibits placental immunoglobulin G (IgG) transfer and lowers circulating maternal IgG levels. In an open-label, single-arm, phase 2 study, nipocalimab demonstrated evidence of safety and efficacy that support further investigation in a pivotal phase 3 trial of recurrent hemolytic disease of the fetus and newborn (HDFN). The phase 3 AZALEA study aims to evaluate the efficacy and safety of nipocalimab in a larger population at risk for severe HDFN, defined as HDFN associated with poor fetal outcomes or neonatal death. STUDY DESIGN: AZALEA is a multicenter, randomized, placebo-controlled, double-blind, phase 3 study enrolling alloimmunized pregnant individuals (N ≈ 120) at risk for severe HDFN based on obstetric history. Participants are randomized 2:1 to receive intravenous 45 mg/kg nipocalimab or placebo weekly from 13-16 to 35 weeks gestational age (GA). During the double-blind treatment period, participants receive standard-of-care weekly monitoring for fetal anemia until planned delivery at 37 to 38 weeks of GA. Postnatal follow-up periods are 24 weeks for maternal participants and 104 weeks for neonates/infants. RESULTS: The primary endpoint is the proportion of pregnancies that do not result in intrauterine transfusion (IUT), hydrops fetalis, or fetal loss/neonatal death from all causes. Key secondary endpoints include the severity of HDFN as measured by a composite HDFN severity index, the earliest time to occurrence of IUT or hydrops fetalis, the modified neonatal mortality and morbidity index in liveborn neonates, and the number of IUTs received. Other endpoints are safety, patient- and caregiver-reported outcomes, pharmacokinetics, pharmacodynamics (e.g., IgG, FcRn receptor occupancy), and immunogenicity of nipocalimab. CONCLUSION: AZALEA, the first placebo-controlled, randomized, multicenter, prospective trial in severe HDFN, is designed to evaluate the safety and efficacy of nipocalimab, a potential preventive and noninvasive intervention, in at-risk HDFN pregnancies. KEY POINTS: · Severe HDFN leads to poor fetal/neonatal outcomes.. · IUTs are associated with complications and fetal loss.. · Nipocalimab blocks IgG recycling and placental transfer.. · Nipocalimab reduces fetal anemia and IUTs in early-onset severe HDFN.. · The phase 3 AZALEA study evaluates nipocalimab in severe HDFN..
ABSTRACT
BACKGROUND: The transfer of pathogenic immunoglobulin G antibodies from mother to fetus is a critical step in the pathophysiology of alloimmune and autoimmune diseases of the fetus and neonate. Immunoglobulin G transfer across the human placenta to the fetus is mediated by the neonatal Fc receptor, and blockade of the neonatal Fc receptor may provide a therapeutic strategy to prevent or minimize pathological events associated with immune-mediated diseases of pregnancy. M281 is a fully human, aglycosylated monoclonal immunoglobulin G1 antineonatal Fc receptor antibody that has been shown to block the neonatal Fc receptor with high affinity in nonclinical studies and in a phase 1 study in healthy volunteers. OBJECTIVE: The objective of the study was to determine the transplacental transfer of M281 and its potential to inhibit transfer of immunoglobulin G from maternal to fetal circulation. STUDY DESIGN: To determine the concentration of M281 required for rapid cellular uptake and complete saturation of the neonatal Fc receptor in placental trophoblasts, primary human villous trophoblasts were incubated with various concentrations of M281 in a receptor occupancy assay. The placental transfer of M281, immunoglobulin G, and immunoglobulin G in the presence of M281 was studied using the dually perfused human placental lobule model. Immunoglobulin G transfer was established using a representative immunoglobulin G molecule, adalimumab, a human immunoglobulin G1 monoclonal antibody, at a concentration of 270 µg/mL. Inhibition of immunoglobulin G transfer by M281 was determined by cotransfusing 270 µg/mL of adalimumab with 10 µg/mL or 300 µg/mL of M281. Concentrations of adalimumab and M281 in sample aliquots from maternal and fetal circuits were analyzed using a sandwich enzyme-linked immunosorbent assay and Meso Scale Discovery assay, respectively. RESULTS: In primary human villous trophoblasts, the saturation of the neonatal Fc receptor by M281 was observed within 30-60 minutes at 0.15-5.0 µg/mL, suggesting rapid blockade of neonatal Fc receptor in placental cells. The transfer rate of adalimumab (0.23% ± 0.21%) across dually perfused human placental lobule was significantly decreased by 10 µg/mL and 300 µg/mL of M281 to 0.07 ± 0.01% and 0.06 ± 0.01%, respectively. Furthermore, the transfer rate of M281 was 0.002% ± 0.02%, approximately 100-fold lower than that of adalimumab. CONCLUSION: The significant inhibition of immunoglobulin G transfer across the human placental lobule by M281 and the minimal transfer of M281 supports the development of M281 as a novel agent for the treatment of fetal and neonatal diseases caused by transplacental transfer of alloimmune and autoimmune pathogenic immunoglobulin G antibodies.
Subject(s)
Antibodies, Monoclonal/pharmacology , Immunoglobulin G/metabolism , Maternal-Fetal Exchange/immunology , Placenta/immunology , Receptors, Fc/immunology , Adalimumab , Biological Transport , Female , Humans , Immunoglobulin G/immunology , Models, Biological , Placenta/metabolism , Pregnancy , Trophoblasts/immunologyABSTRACT
Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc-sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , Drug Design , Immunoglobulins, Intravenous/therapeutic use , N-Acetylneuraminic Acid/metabolism , Receptors, Fc/metabolism , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Blister/complications , Blister/drug therapy , Blister/pathology , Disease Models, Animal , Epidermolysis Bullosa Acquisita/complications , Epidermolysis Bullosa Acquisita/drug therapy , Epidermolysis Bullosa Acquisita/pathology , Glycosylation/drug effects , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulins, Intravenous/pharmacokinetics , Immunoglobulins, Intravenous/pharmacology , Mice , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology , Tissue Distribution/drug effects , Treatment OutcomeABSTRACT
Introduction: Nipocalimab is a high-affinity, fully human, aglycosylated, effectorless, immunoglobulin G (IgG) 1 monoclonal antibody that targets the neonatal Fc receptor (FcRn), decreases systemic IgG including autoantibodies, and is under development in several IgG autoantibody- and alloantibody-mediated diseases, including generalized myasthenia gravis, chronic inflammatory demyelinating polyneuropathy, maternal-fetal medicine, and multiple other therapeutic areas. An initial phase 1 study with single and multiple ascending doses of nipocalimab infused intravenously (IV) over 2 h demonstrated dose-dependent serum pharmacokinetics and IgG reductions, with an adverse event (AE) profile comparable to placebo. Methods: The current investigation evaluates the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of nipocalimab across various IV infusion rates in a randomized, double-blind, placebo-controlled, sequential-dose study. Forty participants were randomized to receive nipocalimab 30 mg/kg over 60, 30, 15 or 7.5 min (0.5, 1, 2, or 4 mg/kg/min); nipocalimab 60 mg/kg over 15 min (4 mg/kg/min); or matching placebo. Results: At doses up to 60 mg/kg and infusion rates up to 4 mg/kg/min (maximum clinically feasible rate), single doses of nipocalimab were tolerable, with 12 (40%) participants experiencing AEs across nipocalimab cohorts compared with 1 (10%) participant in the placebo cohort. AEs deemed treatment related occurred in 6 (20%) participants receiving nipocalimab and 1 (10%) participant receiving placebo. None of the AEs were severe, and no participants discontinued treatment due to AEs. Nipocalimab provided consistent, dose-dependent serum pharmacokinetics and IgG reductions, regardless of infusion rate. Discussion: This study supports the use of shortened durations of nipocalimab infusion for future studies.
ABSTRACT
BACKGROUND AND OBJECTIVES: Nipocalimab is a high-affinity, fully human, effectorless immunoglobulin G1 monoclonal antibody targeting the neonatal Fc receptor and is currently under evaluation for the treatment of rare and prevalent immunoglobulin G autoantibody-mediated and alloantibody-mediated diseases. This phase I, randomized, double-blind, placebo-controlled, single-dose escalation study in healthy Japanese volunteers (N = 24) assessed the safety, pharmacokinetics, and effect on the serum immunoglobulin G level of single doses of nipocalimab. METHODS: Volunteers were grouped into three cohorts and received intravenous nipocalimab at 10, 30, or 60 mg/kg or placebo. To complement the study, genetic variation in the Fcγ receptor and transporter subunit of the neonatal Fc receptor was analyzed in Japanese and diverse populations. RESULTS: Nipocalimab was generally safe and well tolerated at all dose levels, with three (12.5% [3/24]) volunteers experiencing treatment-emergent adverse events across all nipocalimab doses. Mean serum immunoglobulin G levels decreased in a dose-dependent manner from baseline with nipocalimab treatment compared with placebo. Maximum serum nipocalimab concentrations demonstrated proportional increases with dose, while the area under the concentration-time curve was dose dependent and demonstrated non-linear increases with dose. Mean observed half-life was longer as the dose increased. Analysis of genetic variation in Fcγ receptor and transporter identified no unique Japanese variants or variants that alter amino acid sequences in or near the neonatal Fc receptor immunoglobulin G binding site targeted by nipocalimab. CONCLUSIONS: The comparable pharmacokinetic/pharmacodynamic profiles and highly conserved neonatal Fc receptor structure among diverse populations further support the clinical development of nipocalimab for the treatment of various immunoglobulin G autoantibody-mediated and alloantibody-mediated diseases across global sites and populations, including the Japanese population.
Subject(s)
Healthy Volunteers , Immunoglobulin G , Receptors, Fc , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , East Asian People , Histocompatibility Antigens Class I/genetics , Japan , Receptors, Fc/antagonists & inhibitorsABSTRACT
BACKGROUND AND OBJECTIVES: To evaluate in a phase 2 study the safety and efficacy of IV nipocalimab, a fully human, antineonatal Fc receptor monoclonal antibody, in patients with generalized myasthenia gravis (gMG). METHODS: Patients with gMG with inadequate response to stable standard-of-care (SOC) therapy were randomized 1:1:1:1:1 to receive either IV placebo every 2 weeks (Q2W) or one of 4 IV nipocalimab treatments: 5 mg/kg once every 4 weeks (Q4W), 30 mg/kg Q4W, 60 mg/kg Q2W each for 8 weeks, or a 60 mg/kg single dose, in addition to their background SOC therapy. Infusions (placebo or nipocalimab) were Q2W in all groups to maintain blinding. The primary safety endpoint was incidence of treatment-emergent adverse events (TEAEs), including serious adverse events and adverse events of special interest. The primary efficacy endpoint was change from baseline to day 57 in Myasthenia Gravis-Activities of Daily Living (MG-ADL) total scores. Dose response of change at day 57 was analyzed with a linear trend test over the placebo, nipocalimab 5 mg/kg Q4W, nipocalimab 30 mg/kg Q4W, and nipocalimab 60 mg/kg Q2W groups. RESULTS: Sixty-eight patients (nipocalimab: n = 54; placebo, n = 14) were randomized; 64 patients (94.1%) were positive for antiacetylcholine receptor autoantibodies, and 4 patients (6%) were positive for antimuscle-specific tyrosine kinase autoantibodies. Fifty-seven patients (83.8%) completed treatment through day 57. The combined nipocalimab group compared with the placebo group demonstrated similar incidences of TEAEs (83.3% vs 78.6%, respectively) and infections (33.3% vs 21.4%, respectively). No deaths or discontinuations due to TEAEs and no TEAEs of special interest (grade ≥3 infection or hypoalbuminemia) were observed with nipocalimab treatment. A statistically significant dose response was observed for change from baseline in MG-ADL at day 57 (p = 0.031, test of linear trend). DISCUSSION: Nipocalimab was generally safe, well-tolerated, and showed evidence of dose-dependent reduction in MG-ADL scores at day 57 in this phase 2 study. These results support further evaluation of nipocalimab for the treatment of gMG. TRIAL REGISTRATION INFORMATION: Clinical Trials Registration: NCT03772587; first submitted December 10, 2018; EudraCT Number: 2018-002247-28; first submitted November 30, 2018; date of first patient dosed April 10, 2019. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with gMG, nipocalimab was well-tolerated, and it did not significantly improve MG-ADL at any individual dose but demonstrated a significant dose response for improved MG-ADL across doses.
Subject(s)
Activities of Daily Living , Myasthenia Gravis , Humans , Myasthenia Gravis/drug therapy , Antibodies, Monoclonal , Autoantibodies , PatientsABSTRACT
BACKGROUND: Hemolytic disease of the fetus and newborn (HDFN) is mediated by maternal alloantibodies, a consequence of immune sensitization during pregnancy with maternal-fetal incompatibility with ABO, Rhesus factor (Rh), and/or other red blood cell antigens. RhD, Kell, and other non-ABO alloantibodies are the primary cause of moderate to severe HDFN, whereas ABO HDFN is typically mild. HDFN live birth prevalence owing to Rh alloimmunization among newborns in the United States was last estimated to be 106 per 100,000 births in 1986. HDFN live birth prevalence owing to all alloantibodies was estimated to be 817 to 840 per 100,000 in Europe. There is a need for updated prevalence estimates in the United States and a better understanding of disease demographics, severity, and treatments. OBJECTIVE: This study aimed to estimate the live birth prevalence of HDFN and the proportion of severe cases of HDFN in the United States, to describe the associated risk factors, and to compare the clinical outcomes and treatments among healthy newborns, newborns with HDFN, and newborns who are sick without HDFN using a nationally representative hospital discharge database. STUDY DESIGN: In this retrospective, observational cohort study, we used data from the 1996 to 2010 National Hospital Discharge Survey to identify live births, defined by inpatient visits with the newborn flag, with and without a diagnosis of HDFN across 200 to 500 sampled hospitals (≥6 beds) per year. Patient and hospital characteristics, alloimmunization status, disease severity, treatment, and clinical outcomes were evaluated. Frequencies and weighted percentages were calculated for all variables. Logistic regression was used to compare the characteristics between newborns with HDFN and other newborns using odds ratios. RESULTS: Of 480,245 live births identified, 9810 HDFN cases were recorded. When weighted to the United States population, this corresponded to a live birth prevalence of 1695 per 100,000 live births. Compared with other newborns, newborns with HDFN were more likely to be female, Black, living in the South (vs the Midwest or West), and treated at larger (>100 beds) and government-owned hospitals. ABO and Rh alloimmunization accounted for 78.1% and 4.3% of newborns with HDFN, respectively, whereas HDFN caused by other antigens, such as Kell and Duffy, accounted for 17.6% of the cases. Among newborns with HDFN, 22% received phototherapy, 1% received simple transfusions, and 0.5% received exchange transfusions or intravenous immunoglobulin. Newborns affected by HDFN caused by Rh alloimmunization were more likely to require medical interventions, including simple or exchange transfusions, and more likely to be delivered by cesarean delivery. Overall, HDFN was associated with a longer hospital length of stay in the neonatal intensive care unit when compared with healthy and other sick newborns, a higher rate of cesarean delivery, and a higher rate of nonroutine discharge than healthy newborns. CONCLUSION: Overall, the live birth prevalence of HDFN was higher than those previously reported, whereas Rh-induced HDFN live birth prevalence was similar to those previously reported. HDFN live birth prevalence owing to Rh alloimmunization decreased over time, likely because of continued Rh immune globulin prophylaxis. Treatment patterns for newborns with HDFN and the comparative clinical outcomes when compared with healthy newborns confirm the continued clinical needs of this population.
ABSTRACT
Effective tumor immunotherapy may require not only activation of anti-tumor effector cells, but also abrogation of tumor-mediated immunosuppression. The cytokine TGF-ß, is frequently elevated in the tumor microenvironment and is a potent immunosuppressive agent and promoter of tumor metastasis. OX40 (CD134) is a member of the TNF-α receptor superfamily and ligation by agonistic antibody (anti-OX40) enhances effector function, expansion, and survival of activated T cells. In this study, we examined the therapeutic efficacy and anti-tumor immune response induced by the combination of a small molecule TGF-ß signaling inhibitor, SM16, plus anti-OX40 in the poorly immunogenic, highly metastatic, TGF-ß-secreting 4T1 mammary tumor model. Our data show that SM16 and anti-OX40 mutually enhanced each other to elicit a potent anti-tumor effect against established primary tumors, with a 79% reduction in tumor size, a 95% reduction in the number of metastatic lung nodules, and a cure rate of 38%. This positive treatment outcome was associated with a 3.2-fold increase of tumor-infiltrating, activated CD8+ T cells, an overall accumulation of CD4+ and CD8+ T cells, and an increased tumor-specific effector T cell response. Complete abrogation of the therapeutic effect in vivo following depletion of CD4+ and CD8+ T cells suggests that the anti-tumor efficacy of SM16+ anti-OX40 therapy is T cell dependent. Mice that were cured of their tumors were able to reject tumor re-challenge and manifested a significant tumor-specific peripheral memory IFN-γ response. Taken together, these data suggest that combining a TGF-ß signaling inhibitor with anti-OX40 is a viable approach for treating metastatic breast cancer.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azabicyclo Compounds/administration & dosage , Carcinoma/drug therapy , Immunotherapy , Mammary Neoplasms, Experimental/drug therapy , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Azabicyclo Compounds/adverse effects , Carcinoma/pathology , Disease Progression , Drug Synergism , Female , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Neoplasm Transplantation , Receptors, OX40/agonists , Receptors, OX40/immunology , Signal Transduction/drug effects , Tumor BurdenABSTRACT
Since the early 2000s, the Aurora kinases have become major targets of oncology drug discovery particularly Aurora-A and Aurora-B kinases (AKA/AKB) for which the selective inhibition in cells lead to different phenotypes. In addition to targeting these Aurora kinases involved in mitosis, CDK1 has been added as a primary inhibition target in hopes of enhancing the cytotoxicity of our chemotypes harboring the pyrazolopyrimidine core. SAR optimization of this series using the AKA, AKB and CDK1 biochemical assays led to the discovery of the compound 7h which combines strong potency against the 3 kinases with an acceptable microsomal stability. Finally, switching from a primary amide to a two-substituted pyrrolidine amide gave rise to compound 15a which exhibited the desired AKA/CDK1 inhibition phenotype in cells but showed moderate activity in animal models using HCT116 tumor cell lines.
Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , CDC2 Protein Kinase/metabolism , Cell Line , Colon/drug effects , Colon/pathology , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity RelationshipABSTRACT
This Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2. In addition, the modeling rationale was based on superimposing the structures of Aurora-A kinase and CDK2 which revealed enough differences leading to a path for selectivity improvement. The synthesis of the new series of pyrrolopyrimidine analogs relied on the development of a different route for the two key intermediates 7 and 19 which led to analogs with both tunable activity against CDK1 and maintained cell potency.
Subject(s)
Antineoplastic Agents/chemical synthesis , CDC2 Protein Kinase/chemistry , Cyclin-Dependent Kinase 2/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Antineoplastic Agents/pharmacology , Aurora Kinases , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line , Drug Design , Humans , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structural Homology, Protein , Structure-Activity RelationshipABSTRACT
A novel class of pyrazolopyrimidine-sulfonamides was discovered as selective dual inhibitors of aurora kinase A (AKA) and cyclin-dependent kinase 1 (CDK1). These inhibitors were originally designed based on an early lead (compound I). SAR development has led to the discovery of potent inhibitors with single digit nM IC(50)s towards both AKA and CDK1. An exemplary compound 1a has demonstrated good efficacy in an HCT116 colon cancer xenograft model.
Subject(s)
Antineoplastic Agents/pharmacology , CDC2 Protein Kinase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A , Aurora Kinases , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Colonic Neoplasms/pathology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor AssaysABSTRACT
Interruption of TGFbeta signaling through inhibition of the TGFbetaR1 kinase domain may prove to have beneficial effect in both fibrotic and oncological diseases. Herein we describe the SAR of a novel series of TGFbetaR1 kinase inhibitors containing a pyrazolone core. Most TGFbetaR1 kinase inhibitors described to date contain a core five-membered ring bearing N as H-bond acceptor. Described herein is a novel strategy to replace the core structure with pyrazolone ring, in which the carbonyl group is designed as an H-bond acceptor to interact with catalytic Lys 232.
Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazolones/chemistry , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Mice , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Pyrazolones/chemical synthesis , Pyrazolones/pharmacokinetics , Rats , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Structure-Activity RelationshipABSTRACT
OBJECTIVE: TGF-beta plays a significant role in vascular injury-induced stenosis. This study evaluates the efficacy of a novel, small molecule inhibitor of ALK5/ALK4 kinase, in the rat carotid injury model of vascular fibrosis. METHODS AND RESULTS: The small molecule, SM16, was shown to bind with high affinity to ALK5 kinase ATP binding site using a competitive binding assay and biacore analysis. SM16 blocked TGF-beta and activin-induced Smad2/3 phosphorylation and TGF-beta-induced plasminogen activator inhibitor (PAI)-luciferase activity in cells. Good overall selectivity was demonstrated in a large panel of kinase assays, but SM16 also showed nanomolar inhibition of ALK4 and weak (micromolar) inhibition of Raf and p38. In the rat carotid injury model, SM16 dosed once daily orally at 15 or 30 mg/kg SM16 for 14 days caused significant inhibition of neointimal thickening and lumenal narrowing. SM16 also prevented induction of adventitial smooth muscle alpha-actin-positive myofibroblasts and the production of intimal collagen, but did not decrease the percentage of proliferative cells. CONCLUSIONS: These results are the first to demonstrate the efficacy of an orally active, small-molecule ALK5/ALK4 inhibitor in a vascular fibrosis model and suggest the potential therapeutic application of these inhibitors in vascular fibrosis.
Subject(s)
Azabicyclo Compounds/pharmacology , Carotid Artery Injuries/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Activin Receptors, Type I/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Administration, Oral , Animals , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/metabolism , Binding Sites , Carotid Artery Injuries/pathology , Carotid Artery Injuries/physiopathology , Cell Line , Fibroblasts/drug effects , Fibroblasts/pathology , Fibrosis , Humans , Male , Myoblasts, Smooth Muscle/drug effects , Myoblasts, Smooth Muscle/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta/physiologyABSTRACT
The 4-(5-fluoro-6-methyl-pyridin-2-yl)-5-quinoxalin-6-yl-1H-imidazol-2-ylamine 3 is a potent and selective inhibitor of TGF-betaR1. Substitution of the amino group of 3 typically led to a slight decrease in the affinity for the receptor and in TGF-beta-inducted PAI-luciferase reporter activity. However, 2-acetamidoimidazoles were identified as attractive candidates for further optimization as a result of their significant activity combined to their superior pharmacokinetic profile.
Subject(s)
Chemistry, Pharmaceutical/methods , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , Catalytic Domain , Cell Line, Tumor , Drug Design , Humans , Inhibitory Concentration 50 , Luciferases/metabolism , Male , Models, Biological , Molecular Conformation , Rats , Rats, Sprague-DawleyABSTRACT
BACKGROUND: Transforming growth factor beta (TGF-beta) plays a complex role in breast carcinogenesis. Initially functioning as a tumor suppressor, this cytokine later contributes to the progression of malignant cells by enhancing their invasive and metastatic potential as well as suppressing antitumor immunity. The purpose of this study was to investigate the efficacy of SM16, a novel small molecule ALK5 kinase inhibitor, to treat a highly metastatic, TGF-beta-producing murine mammary carcinoma (4T1). MATERIALS AND METHODS: Mice bearing established 4T1 tumors were treated with SM16 intraperitoneally (i.p.) or orally, and primary and metastatic tumor growth was assessed. RESULTS: SM16 inhibited Smad2 phosphorylation in cultured 4T1 tumor cells as well as primary and metastatic 4T1 tumor tissue. Blockade of TGF-beta signal transduction in 4T1 tumor cells by SM16 prevented TGF-beta-induced morphological changes and inhibited TGF-beta-induced invasion in vitro. When delivered via daily i.p. injection or orally through mouse chow, SM16 inhibited the growth of primary and metastatic 4T1 tumors. Splenocytes isolated from mice on the SM16 diet displayed enhanced IFN-gamma production and antitumor CTL activity. Furthermore, SM16 failed to inhibit the growth and metastasis of established 4T1 tumors in immunodeficient SCID mice. CONCLUSION: Taken together, the data indicate that the antitumor efficacy of SM16 is dependent on an immune-mediated mechanism and that SM16 may represent a safe and effective treatment for metastatic breast cancer.
Subject(s)
Azabicyclo Compounds/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/administration & dosage , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Administration, Oral , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Fluorescent Antibody Technique , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Nude , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor AssaysABSTRACT
PURPOSE: Adoptive cellular immunotherapy is a promising approach to eradicate established tumors. However, a significant hurdle in the success of cellular immunotherapy involves recently identified mechanisms of immune suppression on cytotoxic T cells at the effector phase. Transforming growth factor-beta (TGF-beta) is one of the most important of these immunosuppressive factors because it affects both T-cell and macrophage functions. We thus hypothesized that systemic blockade of TGF-beta signaling combined with adoptive T-cell transfer would enhance the effectiveness of the therapy. EXPERIMENTAL DESIGN: Flank tumors were generated in mice using the chicken ovalbumin-expressing thymoma cell line, EG7. Splenocytes from transgenic OT-1 mice (whose CD8 T cells recognize an immunodominant peptide in chicken ovalbumin) were activated in vitro and adoptively transferred into mice bearing large tumors in the presence or absence of an orally available TGF-beta receptor-I kinase blocker (SM16). RESULTS: We observed markedly smaller tumors in the group receiving the combination of SM16 chow and adoptive transfer. Additional investigation revealed that TGF-beta receptor blockade increased the persistence of adoptively transferred T cells in the spleen and lymph nodes, increased numbers of adoptively transferred T cells within tumors, increased activation of these infiltrating T cells, and altered the tumor microenvironment with a significant increase in tumor necrosis factor-alpha and decrease in arginase mRNA expression. CONCLUSIONS: We found that systemic blockade of TGF-beta receptor activity augmented the antitumor activity of adoptively transferred T cells and may thus be a useful adjunct in future clinical trials.
Subject(s)
Azabicyclo Compounds/therapeutic use , Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Combined Modality Therapy , Drug Evaluation, Preclinical , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Neoplasms/immunology , Neoplasms/pathology , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/immunology , Tumor Cells, CulturedABSTRACT
Malignant mesothelioma is an aggressive and lethal pleural cancer that overexpresses transforming growth factor beta (TGFbeta). We investigated the efficacy of a novel small-molecule TGFbeta type I receptor (ALK5) kinase inhibitor, SM16, in the AB12 syngeneic model of malignant mesothelioma. SM16 inhibited TGFbeta signaling seen as decreased phosphorylated Smad2/3 levels in cultured AB12 cells (IC(50), approximately 200 nmol/L). SM16 penetrated tumor cells in vivo, suppressing tumor phosphorylated Smad2/3 levels for at least 3 h following treatment of tumor-bearing mice with a single i.p. bolus of 20 mg/kg SM16. The growth of established AB12 tumors was significantly inhibited by 5 mg/kg/d SM16 (P < 0.001) delivered via s.c. miniosmotic pumps over 28 days. The efficacy of SM16 was a result of a CD8+ antitumor response because (a) the antitumor effects were markedly diminished in severe combined immunodeficient mice and (b) CD8+ T cells isolated from spleens of mice treated with SM16 showed strong antitumor cytolytic effects whereas CD8+ T cells isolated from spleens of tumor-bearing mice treated with control vehicle showed minimal activity. Treatment of mice bearing large tumors with 5 mg/kg/d SM16 after debulking surgery reduced the extent of tumor recurrence from 80% to <20% (P < 0.05). SM16 was also highly effective in blocking and regressing tumors when given p.o. at doses of 0.45 or 0.65 g/kg in mouse chow. Thus, SM16 shows potent activity against established AB12 malignant mesothelioma tumors using an immune-mediated mechanism and can significantly prevent tumor recurrence after resection of bulky AB12 malignant mesothelioma tumors. These data suggest that ALK5 inhibitors, such as SM16, offer significant potential for the treatment of malignant mesothelioma and possibly other cancers.
Subject(s)
Activin Receptors, Type I/antagonists & inhibitors , Mesothelioma/drug therapy , Mesothelioma/surgery , Neoplasm Recurrence, Local/prevention & control , Protein Kinase Inhibitors/therapeutic use , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Disease-Free Survival , Drug Evaluation, Preclinical , Female , Humans , Immunity, Cellular/drug effects , Mesothelioma/pathology , Mice , Mice, Inbred BALB C , Mice, SCID , Neoplasm Transplantation , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type I , Tumor Cells, CulturedABSTRACT
M281 is a fully human, anti-neonatal Fc receptor (FcRn) antibody that inhibits FcRn-mediated immunoglobulin G (IgG) recycling to decrease pathogenic IgG while preserving IgG production. A randomized, double-blind, placebo-controlled, first-in-human study with 50 normal healthy volunteers was designed to probe safety and the physiological maximum for reduction of IgG. Intravenous infusion of single ascending doses up to 60 mg/kg induced dose-dependent serum IgG reductions, which were similar across all IgG subclasses. Multiple weekly doses of 15 or 30 mg/kg achieved mean IgG reductions of ≈85% from baseline and maintained IgG reductions ≥75% from baseline for up to 24 days. M281 was well tolerated, with no serious or severe adverse events (AEs), few moderate AEs, and a low incidence of infection-related AEs similar to placebo treatment. The tolerability and consistency of M281 pharmacokinetics and pharmacodynamics support further evaluation of M281 in diseases mediated by pathogenic IgG.
Subject(s)
Antibodies/metabolism , Antibodies/therapeutic use , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Adult , Antibodies/adverse effects , Double-Blind Method , Female , Healthy Volunteers , Humans , Infusions, Intravenous/methods , Male , Young AdultABSTRACT
BACKGROUND: The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients. METHODS: Molecular profiling was conducted using mass spectrometry-based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points. Shotgun proteomics was performed on 9 KD adults with giant CAA and matched healthy controls. Plasma calprotectin was measured by ELISA in 28 pediatric KD patients 1 year post-KD, 70 adult KD patients, and 86 healthy adult volunteers. RESULTS: A characteristic molecular profile was seen in pediatric patients during the acute disease, which resolved at the subacute and convalescent periods in patients with no coronary artery sequelae but persisted in 2 patients who developed giant CAA. We, therefore, investigated persistence of inflammation in KD adults with giant CAA by shotgun proteomics that revealed a signature of active inflammation, immune regulation, and cell trafficking. Correlating results obtained using shotgun proteomics in the pediatric and adult KD cohorts identified elevated calprotectin levels in the plasma of patients with CAA. Investigation of expanded pediatric and adult KD cohorts revealed elevated levels of calprotectin in pediatric patients with giant CAA 1 year post-KD and in adult KD patients who developed giant CAA in childhood. CONCLUSIONS: Complex patterns of biomarkers of inflammation and cell trafficking can persist long after the acute phase of KD in patients with giant CAA. Elevated levels of plasma calprotectin months to decades after acute KD and infiltration of cells expressing S100A8 and A9 in vascular tissues suggest ongoing, subclinical inflammation. Calprotectin may serve as a biomarker to inform the management of KD patients following the acute illness.